A crash-course on Datalog
(from Basi di Datil)

prof. Letizia Tanca

Relational Formal Languages

— Algebra

— Calculus
* Tuple calculus
e Domain calculus

— Datalog

Datalog is based on
Logic Programming

* A rule-based programming paradigm similar to
Prolog (1970)
e Datalog: “Prolog for databases” (1984)
 Main differences
— no function symbols
— a different computation model (declarative)

A Datalog program is a set of
rules

Rule head, or LHS and rule body, or RHS:

P -Pj Po --- Py
also written as

P € Py, Do ... Py

A p is a literal, or predicate instance:
 name of the predicate

e list of its arguments:
e constants
e variables

 “don’t care” symbol: “_“ (forbidden in the lhs)
4

Examples

Rules are safe: every variable in a head must appear
in the corresponding body

A safe Datalog rule:

S(x) — P(a, x),Q(y, a)
a is a constant (from the database domain), x, y are
variables

P(x, y) — Q(x, z), S(z, x) is not safe, why?

A sample database

PARENT

Parent Child
Carlo Antonio
Carlo Gianni
Anna Antonio
Anna Gianni
Gianni Andrea
Antonio |Paola

PERSON
Name Age Gender
Carlo 65 M
Antonio 40 M
Anna 60 F
Gianni 43 M
Andrea 22 M
Paola 20 F

Basi di Dati

Examples

Grandparent(X,Z) < Parent (X, Y), Parent(Y, Z)
Father(X,Y):- Person(X,_, " M’),Parent(X,Y).

e Parent and Person are base relations, or extensional
relations, not defined anywhere in the program

e We are defining the views Grandparent and Father

Variables are implicitly universally quantified
E.g. the first rule is a simplified expression for

VXVYVZ (Grandparent(X,Z) < Parent (X, Y), Parent(Y, Z)))

Datalog rules and DBs

 Each tuple corresponds to a base fact (or ground
literal) :

Parent (“Carlo”, "Antonio”) .

[s the first tuple of the PARENT relation

Interpretation and Unification

Rule interpretation of:
Father (X,Y):- Person (X, , M),Parent (X,Y).

e LHS true if RHS is true

 RHS is true if, for each literal of RHS, all its variables
are unifiable, i.e. replaceable, with constants which
make the predicate true

Person(X,_,” M): possible unifications for X:

{“Carlo”, “Antonio”, “Gianni”, “Andrea”}

Corrispondance between Datalog
and relational algebra

selections
projections /
| | / |

Father{X,Y) :- Person(X, ,’ M’), Parent{X,Y)

join

* In Relational Algebra:
FATHER = I1, 5 O3 _-\y (PERSON »<, _, PARENT)

10

EXTENSIONAL AND
INTENSIONAL DATABASE

e Extensional (EDB): the DB tables
* Intensional (IDB): the set of predicates that
appear in the LHS of at least one rule

> views, or knowledge, inferred from the EDB

* by hypothesis, in standard Datalog
EDBNIDB =Y

Basi di Dati 11

Queries 1n Datalog

Queries are expressed as “goals” :
?- parent("Anna”’,X)
X = “Antonio” or X="Gianni”

A goal without variables returns True or False

?- parent ("Anna’”,” Antonio”) = True
?- parent ("Anna’, Andrea”) = False

Basi di Dati 12

Queries 1n Datalog m)

 Queries on EDB + IDB are expressed by goals
as well:
?- Father(“Carlo”,X)
« Computation: we look for a rule defining Father
and for a substitution that unifies with X

We obtain X = “Antonio” or X="Gianni”
Also here, a goal without variables returns True

or False
e ?- Father("Carlo”,”Antonio”) = True

e ?- Father(“Carlo”,”Andrea”) = False
Basi di Dati 13

Queries 1n Datalog

To write more complex queries we use the rules:
e.g. “find all Carlo’s brothers”

We define the concept of Brother:

Brother(X,Y) :- Parent (Z,X), Parent(Z,Y), X=Y.

Then we write the goal:

P- Brother(“Carlo”,X).

Basi di Dati 14

More rules on the same
BD
MothenX,Y) :- Person(X, , F’), Parent(X,Y).
Grandparent(X,Z) :- Parent (X,Y), Parent(Y,2).
Uncle (X,Y) :- Person(X,_, M), Brother(X,Z), Parent(Z,Y).
Brother(X,Y) :- Parent (Z,X), Parent(Z,Y), X=Y.

NOTE THE FOLLOWING:
Ancestor (x, y) < Parent(x, y)
Ancestor (x, z) < Parent(x, y), Ancestor (y, z)

Basi di Dati 15

Recursive queries

New elements w.r.
PARENT

Basi di Dati

ANCESTOR
Carlo Antonio
Carlo Gianni
Anna Antonio
Anna Gianni
Gianni Andrea
Antonio |Paola
Carlo Andrea
Carlo Paola
Anna Andrea
Anna Paola

16

Computation of recursive rules

ANCESTOR® < &
ANCESTOR! <= PARENT
ANCESTOR? < [(II, , (ANCESTOR! ><,_, PARENT) U

PARENT] U ANCESTOR!
ANCESTORS « [II, , (ANCESTOR? ><,_; PARENT) U

PARENT] U ANCESTOR?

Until ANCESTOR® = ANCESTOR™! (fixpoint)

Basi di Dati 17

Uses of Datalog

Constraints:

incorrectdb1(X,Y) :- Mother(X,Z), Mother(Y,Z), X-Y.
incorrectdb2(X) :- Ancestor(X,X).
incorrectdb3() :- Parent(X,Z),-Person(X,_,_).

Note: by including the variables in the rule heads
we can also find the objects that violate the
constraint!

Basi di Dati 18

Datalog terminology

Relation — Predicate
Attribute — Argument
Tuple — Fact

View — Rule

Query — Goal + rules

Inportant notes:
e Attributes do not have names!

 We did not speak about difference and
negation

Basi di Dati

19

