
Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-6

ON MAKING RELATIONAL DIVISION COMPREHENSIBLE

Lester I. McCann1

1 Computer Science Department, University of Wisconsin - Parkside, 900 Wood Road, P.O. Box 2000, Kenosha, WI 53141-2000 [mccann at uwp.edu]

Abstract - Division is the most intellectually challenging of
the basic operators of relational algebra. Although its
utility is unquestioned, its presentation by many textbooks,
and therefore by many instructors, leaves much to be
desired. This paper examines the standard approaches used
to express division in relational algebra and SQL, explains
the derivation of each, and presents a coherent sequence of
examples that we have used successfully to teach division to
students in introductory database classes.

Index Terms – Division, Relational Algebra, SQL, Relational
Database Management Systems.

INTRODUCTION

The formal languages of relational calculus and relational
algebra were introduced by Codd as companions for the
relational model [1,2]. Due in large part to its procedural
nature, relational algebra is a useful stepping-stone for
students who are learning the standard relational database
management system (DBMS) language SQL, which, like
relational calculus, is non-procedural. With an
understanding of relational algebra, students can more easily
comprehend the processing underlying most SQL
expressions [10].

Although we do not have the space to review relational
algebra, a brief review of its operators will help our
presentation. Readers needing an in-depth introduction may
refer to any of a number of suitable database texts (e.g.,
[3,6,8]).

A relation can be thought of as a two-dimensional
matrix of rows (tuples) and columns (attributes). Each
tuple's content describes an entity. Operators in relational
algebra accept one or two relations as input and produce a
relation as output; thus, operator composition is the basic
mechanism of expression construction. The five
fundamental relational algebra operators are selection
(represented by the Greek letter σ), projection (π), Cartesian
Product (×), union (∪), and difference (-). Three additional
operators – join (|× |, or ‘bowtie’), intersection (∩), and
division (÷) – can be defined in terms of the first five.

Ask an instructor of a database class which of these
eight operators is the most difficult for students to grasp, and
he or she will almost certainly reply “division.”

Many instructors and even a few textbook authors gloss
over division or ignore it completely. This is especially true
of their coverage of division's expression in SQL, because
SQL has no short-hand representation for division.

We feel that the presentations of the division operator in
most database texts lack the detail necessary to help students
and instructors understand division and appreciate its utility.
We will demonstrate that division is not as mysterious as it
might seem.

UNDERSTANDING DIVISION USING
RELATIONAL ALGEBRA

Textbook presentations of the division operator usually
begin by saying that it is useful for ‘certain special kinds of
queries,’ and continue with an example of an “all” or “for
all” query, such as “What are the names of the students
taking all of the Computer Science seminar classes?” This
is soon followed by a complex description of the sequence
of basic relational algebra operations that comprise division,
and perhaps another example. After such a ‘feet-first’
presentation, students are more than ready to ignore
division, or worse, to try to find a shortcut way to solve “for
all” queries.

Why is it Called ‘Division?’

To help students understand division, we start by explaining
the origin of its name. They already understand that
division is the counterpart of multiplication in arithmetic: 2
* 3 = 6, and so 6 / 3 = 2 and 6 / 2 = 3. We build on that
knowledge by asking them to consider two unary relations m
and n:

m C n D

 4 3
8 1

 7

Because we have covered the fundamental relational

algebra operators first, students can quickly tell us that m × n
is:

o C D
 4 3
 4 1
 4 7
 8 3
 8 1
 8 7

It is not difficult for the students to accept (on faith, for

the moment) that ÷ is × 's counterpart:

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-7

o ÷ n = m C o ÷ m = n D

 4 3
 8 1
 7

We show o ÷ n first because it is easier to see that the

values 4 and 8 are paired with each member of n. Of course,
the corresponding pairings hold in o ÷ m, but they are not as
readily apparent.

Up to this point, students have not seen a formal
definition of division, and yet they have a firm grasp on the
basic idea: Division is used to identify attribute values of
one relation that are associated with every member of
another relation. With this presentation in mind, the students
are ready to see more practical uses for division, as well as
to explore its formal definition.

A MORE PRACTICAL EXAMPLE

Due to space considerations, rather than create our own
schema and data, we will base our example on the P (parts)
and SPJ (relationship) relations of Date's well-known
suppliers-parts-projects relational schema and its sample
data [3], which is based on examples from Codd's
introduction to the relational model [1]. Here are the
schemata of P and SPJ:

P pno pname color weight city

SPJ sno pno jno qty

The underlined attributes are the primary keys; the
primary key of SPJ is a three-attribute compound key. SPJ’s
pno field is a foreign key to P’s pno field. Similarly, sno and
jno are foreign keys to the S (supplier) and J (project)
relations, respectively. The schemata of these relations are
not provided here, as we do not use them in this paper.
Also, we have replaced ‘#’ with ‘no’ in the key field names,
because many DBMSes do not permit field names to include
the ‘#’ character.

Consider this query: “Find the sno values of the
suppliers that supply all parts of weight equal to 17.” With
perhaps a refresher on the ×/÷ relationship, students can tell
us the schemata of the dividend (α) and divisor (β) relations
which are required to set up the division:

α sno pno β pno

Further, they should be able to state that the relational
algebra queries necessary to create those relations are

)(, SPJpnosnoπα ← and))((17 Pweightpno =← σπβ .

When these queries are applied to Date’s sample data, the
resulting relations are:

α sno pno β pno
 S1 P1 P2
 S2 P3 P3
 S2 P5
 S3 P3
 S3 P4
 S4 P6
 S5 P1
 S5 P2
 S5 P3
 S5 P4
 S5 P5
 S5 P6

We have removed duplicate values from α, for clarity.

With these relations in front of them, students will be able to
see that supplier S5 is the only one that supplies both parts
P2 and P3.

IMPLEMENTING DIVISION…

If our goal is to have our classes understand what relational
division is and how it can be useful, the preceding may be all
that is required. However, if we want to show our students
how to express division in terms of the fundamental
relational algebra operators (and eventually in SQL), we will
need to explain a fairly complex query.

…In Relational Algebra

Having defined the relations α and β, we next show our
students division in terms of π, ×, and -. The expression is:

)))((()(αβαππαπβα −×−=÷ snosnosno

where sno is the difference in the schemata of α and β (or,
sno is the only attribute found in α but not in β). Texts
typically present this expression in completely generic
terms, which only seems to confuse our students. We prefer
to introduce it in terms of this concrete suppliers-parts-
projects example.

Even with our preliminary discussion of the
construction of α and β, very few students will be able to
understand the logic underlying that query without help. We
explain this expression using a top-down approach. At the
top level, the expression has the form DC − , where

)(απ snoC = and)))(((αβαππ −×= snosnoD . In

the end, we want to produce a set of sno values, and C is
easily seen to be the set of available sno values. Because the
operator is set difference, to get the desired result D must be
a set of sno values that are not desirable. This, then, is the
plan: Given a set of possible answers, remove from it those
that are not answers; the tuples that remain must be the
answers.

How do we determine which sno values we are not
interested in keeping? Again, it helps to think about it

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-8

backwards: In the end, we want to keep the sno values that,
within α, are paired with all of members of β; thus, the sno
values that we do not want are those that, when we examine
α, we do not find paired with all of the members of β. Now,
if we just happen to have a group of all possible sno, pno
pairings and we remove the ones that also exist in α, we will
be left with the pairs that we did not find in α. This is easily
done: We create all possible pairings of α's sno values and

β's pno values))((βαπ ×sno and use set difference to

remove from those pairings any pairs that we find in α.
When presenting the relational algebra expression for

division, we like to begin by presenting the sample data and
allowing the students to manually find the result of the
division through inspection of the dividend and divisor
relations. However, finding the answer by inspection is a
potential problem, one which we address in a later section.

 After the students know the result, we work through
the division expression on the same data and show most of
the intermediate relations produced by the expression. This
helps the students focus on how the steps of the expression
work together to produce the desired result.

Using Date’s data, here is the walk-through for our
example. The expression βαπ ×)(sno produces the

possible sno, pno pairings:

)(απ sno sno β pno γ sno pno

 S1 P2 S1 P2
 S2 × P3 = S1 P3
 S3 S2 P2
 S4 S2 P3
 S5 S3 P2
 S3 P3
 S4 P2
 S4 P3
 S5 P2
 S5 P3

Using set difference, we remove from γ the pairings that

already exist in α (the ‘victims’ are shaded):

γ sno pno α sno Pno δ sno pno
 S1 P2 S1 P1 S1 P2
 S1 P3 - S2 P3 = S1 P3
 S2 P2 S2 P5 S2 P2
 S2 P3 S3 P3 S3 P2
 S3 P2 S3 P4 S4 P2
 S3 P3 S4 P6 S4 P3
 S4 P2 S5 P1
 S4 P3 S5 P2
 S5 P2 S5 P3
 S5 P3 S5 P4
 S5 P5
 S5 P6

Note that all of γ’s S5 tuples were ‘victims.’ This

means that S5 is the only supplier that supplies all parts of
weight 17. Removing γ’s sno values from the list of
available sno values will produce the result of the division:

)(απ sno sno)(δπ sno sno ÷ sno

 S1 S1 S5
 S2 - S2 =
 S3 S3
 S4 S4
 S5

One of the difficulties in giving a class a feel for

relational algebra is that commercial DBMSes do not accept
relational algebra queries. We have had success using the
relational algebra based LEAP DBMS [5] to help students
familiarize themselves with relational algebra in general and
division in particular. LEAP does not have a built-in division
operator, the lack of which forces students to work through
the implementation of division on their own.

… In SQL

After acquiring a relational algebra foundation, students
have little trouble understanding how the parts of basic SQL
queries correspond to the fundamental relational algebra
operators. As in relational algebra, in SQL it is necessary to
construct a division query manually. The resulting SQL
queries are easily as confusing as the relational algebra
expression. However, with the relational algebra version
behind them, students are better prepared to understand an
SQL version or two. As an additional benefit, concepts such
as sub-queries and nested correlated queries can be
demonstrated at the same time.

Although efficient division algorithms exist [4], we
know of no database management systems that recognize
division queries and use a specific algorithm for their
evaluation. This decision is understandable, given that
division queries expressed in SQL would be difficult to
detect and are uncommon when compared with other
expensive operators (e.g., joins). One nice effect of this is

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-9

that instructors can use their DBMS's query plan explanation
option to explore how a DBMS executes a division query.
This investigation can lead to an in-class discussion of cases
other than division in which one might wish to extract data
from a DBMS and process it with a special-purpose
algorithm.

In the following subsections, we present four SQL
implementations of division. We do not advocate presenting
all of them during lecture. Instead, we suggest that
instructors select for presentation one or two that integrate
naturally into the students’ relational algebra and SQL
backgrounds.

Direct Application of the Expression

Perhaps the most approachable formulation of division in
SQL is through a direct translation of the relational algebra
expression. This translation is easily performed with a
bottom-up approach.

Relations α and β can be created using the SQL queries
select sno, pno from spj and select pno from p
where weight = 17, respectively. These relations could be
materialized as temporary relations in advance, or could be
embedded in the translation as dynamically created sub-
queries. We opt for the latter, as we feel the introduction of
temporary relations does not add appreciably to the clarity of
the example.

Recall that the relational algebra expression for division
is in two parts, DC − , and that

)))(((αβαππ −×= snosnoD . Creating βαπ ×)(sno

in SQL requires the use of sub-queries in the from clause of
a select statement:

 select sno, pno
 from (select sno from spj) as t1,
 (select pno from p
 where weight=17) as t2;

When sub-queries are used in the from clause, most
DBMSes (including the one used for these examples,
PostgreSQL v. 7.2.1 [7]) require the use of aliases to label
the sub-queries. A select with no where clause produces a
Cartesian Product of the supplied relations.

Modern versions of SQL provide except as the
equivalent of the relational algebra set difference operator.
The presence of except makes the creation of the rest of the
translation straight-forward:

 select distinct sno from spj

except
select sno
 from (select sno, pno
 from (select sno from spj) as t1,
 (select pno from p
 where weight=17) as t2
 except
 select sno, pno
 from spj
) as t3;

In PostgreSQL, a query plan explanation can be

displayed by adding the keyword explain at the front of the
query. When run on a database containing Date's sample
data, an explanation of this expression revealed a complex
plan that includes a nested-loops join, two sorts, three base-
relation scans, and five sub-query scans. Thus, a direct
translation does not result in an inexpensive execution. In
spite of this, we feel that the connection to the relational
algebra version makes it worth presenting to students who
have already been exposed to relational algebra. Note that
the exact plan chosen by a query optimizer depends on a
variety of factors, including past queries presented to the
database and the sizes of the relations.

Through the Application of Logical Equivalences

The cost of execution of the direct translation helps explain
why mainstream texts usually opt for formulations resulting
from the application of quantification tautologies.

Consider the tautology)),((bafba ∃∀ ↔

)),((bafba ∃∃ . We can use it to replace a universal
quantification (which SQL does not support) with the
negation of an existential quantification, which SQL
provides (not exists). The effect is to convert a query of
the form “Find sno values such that for all parts of weight 17
there exist suppliers that supply them all” into one of the
form “Find sno values such that there do not exist any parts
of weight 17 for which there do not exist any suppliers that
supply them all.” We are exchanging inexpressibility in SQL
for a double negation, which most people find difficult to

comprehend. The resulting ‘double ∃ ’ SQL query looks
like this:

select distinct sno from spj as globl
 where not exists
 (select pno from p
 where weight = 17 and not exists
 (select * from spj as locl
 where locl.pno = p.pno
 and locl.sno = globl.sno));

Because PostgreSQL v. 7.2.1 complains about the use

of the identifiers global and local as aliases, we have used
obvious misspellings in our queries.

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-10

It is essential for students to understand that, in a
correlated nested query such as this, the aliases (a.k.a. tuple
variables) have scope across parts of the query based on
their declaration position just as programming language
variables have scope across code. In this example, the alias
globl represents a unique tuple from relation SPJ for each
execution of the innermost select. Further, globl is
accessible, as its name suggests, from all parts of the query.
By contrast, locl's scope is limited to just the innermost
select.

Our experience has been that students find this approach
to be difficult to understand because of the double-negative
construction and the disconnect from the logic of the
relational algebra expression. It is no surprise that at least
one textbook resorts to a ‘cookbook’ approach for the
construction of division queries based on this tautology [9].

An alternate approach uses the idea of set containment
(i.e., superset). If a supplier supplies a superset of the parts
of weight 17, the supplier clearly supplies them all. SQL
does not have a containment operator (though it was once
proposed), but logic comes to our rescue again: If BA ⊇ ,

AB − will be empty (or,)(AB −∃). Here, A is the set of
parts of weight 17 that a supplier supplies, and B is the set of
all available parts of weight 17. The resulting SQL query
scans through the sno values, computes A based on the
current sno value, and includes the sno value in the quotient
if the difference is empty:

select distinct sno from spj as globl
 where not exists (
 (select pno from p where weight = 17)
 except (select p.pno from p, spj
 where p.pno = spj.pno
 and spj.sno = globl.sno));

The logic of this version does not bother students

greatly. If students are not familiar with relational algebra,
this version of division can be more easily introduced than
the direct translation and is easier for students to understand
than the double-negative representation.

The plans generated by PostgreSQL for these two
formulations both require fewer operations than does the

direct expression translation version, with the `double ∃ '
version having by far the fewest.

A Counting We Will Go

Tuples resulting from the application of a division operator
exist because their data corresponds with all of the values in
another relation. The superset approach uses set containment
to count (in effect) the number of members in two sets in
hopes of finding the sums to be equal. Having observed that
the result is being determined by the cardinality of these sets,
we can construct a fourth approach to the expression of
division in SQL using the count() aggregate function.

The idea is to find the sno values of the suppliers that
supply parts of weight 17 and how many of those parts each
supplies. This is easily accomplished with a join of P and
SPJ that counts the pno values of weight 17 associated with
each sno value. A having clause compares each count to the
result of a sub-query that finds the total number of parts of
weight 17. The resulting SQL query's plan is not as efficient

as that of the `double ∃ ' version, but it is better than the
other two, and may be more easily understood.

 select distinct sno from spj, p
 where spj.pno = p.pno and weight = 17
 group by sno
 having count(distinct p.pno) =
 (select count (distinct pno)
 from p where weight = 17);

SOME DIVISION PITFALLS

As explained in most database texts, division is used to
answer “all” or “for all” queries, such as the “What are the
names of the students taking all of the Computer Science
seminar classes?” example mentioned at the start of the
second section of this paper. The inherent suggestion is that
division is the equivalent of the universal quantifier (∀) of
the relational calculus family of formal relational languages.

This suggestion does not withstand close scrutiny. The
seminar query just mentioned can be used to demonstrate a
key problem. The query is to return the names of the
students who are enrolled in all of the CS seminar classes
being offered (during the current term, presumably). Clearly,
we need a relation with name and course identification
attributes, and another with the course identifications of the
seminar classes:

enroll name class seminar class

Dividing enroll by seminar gives the desired result,

unless seminar is an empty relation! Logically, if no seminar
classes are being offered, any student is taking all of the
seminar classes. This result is not satisfying and is not in
keeping with the spirit of the original query. More
accurately, the query that division is answering in this case is
“What are the names of the students taking all of the
Computer Science seminar classes, assuming that at least
one is being offered?”. Because the divisor relation is often
the result of a sub-query, the divisor could easily be empty.
Students should be made aware of this possibility.

A second problem with the “for all” wording is that
students, desperate to avoid dealing with division,
sometimes work hard to invent new interpretations of the
meaning of queries in order to make less confusing operators
seem suitable.

Consider this slight variation on our suppliers-parts-
projects query: “Find the sno values of the suppliers that

Session F2C

0-7803-7961-6/03/$17.00 © 2003 IEEE November 5-8, 2003, Boulder, CO
33rd ASEE/IEEE Frontiers in Education Conference

F2C-11

supply all parts of weight equal to 19.” Having seen how to
find the answer by inspection, with Date’s sample data
available students soon discover that suppliers S4 and S5
both supply all of the parts having a weight of 19. Rather
than formulate a logically sound query using division, some
students cannot resist the temptation to construct a simpler
but incorrect query that happens to produce the correct
answer:

select distinct sno
 from (select sno, pno from spj) as one,
 (select pno from p
 where weight = 19) as two
 where one.pno = two.pno;

This is merely a join of the α and β relations followed

by a projection on sno, but the resulting relation has the
same content as the result of the correct division query.
What the students have constructed is a query to answer the
question “Find the sno values of the suppliers that supply
parts of weight equal to 19,” which is the original question
without the “all.”

Instructors can help students avoid temptation by
selecting queries and sample data that produce a β relation
with more than one tuple. In this example, only part P6 is of
weight 19. If we attempt the same logically incorrect join
query with our original weight of 17, the result will contain
three suppliers - S2, S3, and S5 – because all three supply at
least one of the two parts of weight 17. Division produces
only S5, as we saw earlier. Although this suggestion merely
reduces the odds that the two types of queries will having
matching results, we have found it to be an effective way for
students to discover the importance of division on their own.

CONCLUSION

The relational algebra division operator need not be the
source of confusion that many database students feel it to be.
With a bit of time and a coherent progression of well-
chosen examples, students can learn when to apply it, how to
express it in SQL, and why those expressions are correct.
We find our approach to be more effective and complete
than those found in most database textbooks.

REFERENCES

[1] Codd, E. F., “A relational model of data for large shared data banks,”
Communications of the ACM, 13, 6, 1970, pp. 377-387.

[2] Codd, E. F., “Relational completeness of data base sublanguages,” in
Data Base Systems (Courant Computer Science Symposium 6),
Rustin, R., editor, Prentice-Hall, 1972.

[3] Date, C. J., An Introduction to Database Systems, Addison-Wesley,
seventh edition, 2000.

[4] Graefe, G., “Relational division: Four algorithms and their
performance,” Proceedings of the IEEE International Conference on
Data Engineering, 1989, pp. 94-101.

[5] Leyton, R., LEAP, http://leap.sourceforge.net/, 2002.

[6] O'Neil, P., and O'Neil, E., Database -- Principles, Programming, and
Performance, Academic Press, second edition, 2001.

[7] PostgreSQL Global Development Group. PostgreSQL,
http://www.postgresql.org/, 2002.

[8] Ramakrishnan, R., and Gehrke, J., Database Management Systems,
McGraw-Hill, third edition, 2003.

[9] Watson, R.T., Data Management: Databases and Organizations, John
Wiley and Sons, Inc., third edition, 2002.

[10] Welty, C., and Stemple, D.W., “Human factors comparison of a
procedural and a non-procedural query language,” ACM Transactions
on Database Systems, 6, 4, 1981, pp. 626-649.

