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Abstract - Division is the most intellectually challenging of 
the basic operators of relational algebra.  Although its 
utility is unquestioned, its presentation by many textbooks, 
and therefore by many instructors, leaves much to be 
desired.  This paper examines the standard approaches used 
to express division in relational algebra and SQL, explains 
the derivation of each, and presents a coherent sequence of 
examples that we have used successfully to teach division to 
students in introductory database classes. 
 
Index Terms – Division, Relational Algebra, SQL, Relational 
Database Management Systems. 

INTRODUCTION 

The formal languages of relational calculus and relational 
algebra were introduced by Codd as companions for the 
relational model [1,2].  Due in large part to its procedural 
nature, relational algebra is a useful stepping-stone for 
students who are learning the standard relational database 
management system (DBMS) language SQL, which, like 
relational calculus, is non-procedural.  With an 
understanding of relational algebra, students can more easily 
comprehend the processing underlying most SQL 
expressions [10]. 

Although we do not have the space to review relational 
algebra, a brief review of its operators will help our 
presentation.  Readers needing an in-depth introduction may 
refer to any of a number of suitable database texts (e.g., 
[3,6,8]). 

A relation can be thought of as a two-dimensional 
matrix of rows (tuples) and columns (attributes).  Each 
tuple's content describes an entity.  Operators in relational 
algebra accept one or two relations as input and produce a 
relation as output; thus, operator composition is the basic 
mechanism of expression construction.  The five 
fundamental relational algebra operators are selection 
(represented by the Greek letter σ), projection (π), Cartesian 
Product (×), union  (∪), and difference (-).  Three additional 
operators – join (|× |, or ‘bowtie’), intersection (∩), and 
division  (÷) – can be defined in terms of the first five. 

Ask an instructor of a database class which of these 
eight operators is the most difficult for students to grasp, and 
he or she will almost certainly reply “division.” 

Many instructors and even a few textbook authors gloss 
over division or ignore it completely.  This is especially true 
of their coverage of division's expression in SQL, because 
SQL has no short-hand representation for division. 

We feel that the presentations of the division operator in 
most database texts lack the detail necessary to help students 
and instructors understand division and appreciate its utility.  
We will demonstrate that division is not as mysterious as it 
might seem. 

UNDERSTANDING DIVISION USING 
RELATIONAL ALGEBRA 

Textbook presentations of the division operator usually 
begin by saying that it is useful for ‘certain special kinds of 
queries,’ and continue with an example of an “all” or  “for 
all” query, such as “What are the names of the students 
taking all of the Computer Science seminar classes?”  This 
is soon followed by a complex description of the sequence 
of basic relational algebra operations that comprise division, 
and perhaps another example.  After such a ‘feet-first’ 
presentation, students are more than ready to ignore 
division, or worse, to try to find a shortcut way to solve “for 
all” queries. 

Why is it Called ‘Division?’ 

To help students understand division, we start by explaining 
the origin of its name.  They already understand that 
division is the counterpart of multiplication in arithmetic:  2 
* 3 = 6, and so 6 / 3 = 2 and 6 / 2 = 3.  We build on that 
knowledge by asking them to consider two unary relations m 
and n: 

 
m C  n D 

 4  3 
8  1 

  7 
 
Because we have covered the fundamental relational 

algebra operators first, students can quickly tell us that m × n 
is: 

 
o C D 
 4 3 
 4 1 
 4 7 
 8 3 
 8 1 
 8 7 

 
It is not difficult for the students to accept (on faith, for 

the moment) that ÷ is × 's counterpart: 
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o ÷ n = m C  o ÷ m = n D 

  4    3 
  8    1 
      7 

 
We show o ÷ n first because it is easier to see that the 

values 4 and 8 are paired with each member of n. Of course, 
the corresponding pairings hold in o ÷ m, but they are not as 
readily apparent. 

Up to this point, students have not seen a formal 
definition of division, and yet they have a firm grasp on the 
basic idea:  Division is used to identify attribute values of 
one relation that are associated with every member of 
another relation. With this presentation in mind, the students 
are ready to see more practical uses for division, as well as 
to explore its formal definition. 

A MORE PRACTICAL EXAMPLE 

Due to space considerations, rather than create our own 
schema and data, we will base our example on the P (parts) 
and SPJ (relationship) relations of Date's well-known 
suppliers-parts-projects relational schema and its sample 
data [3], which is based on examples from Codd's 
introduction to the relational model [1]. Here are the 
schemata of P and SPJ: 
 

P pno pname color weight city 
 

SPJ sno pno jno qty 
 

The underlined attributes are the primary keys; the 
primary key of SPJ is a three-attribute compound key.  SPJ’s 
pno field is a foreign key to P’s pno field.  Similarly, sno and 
jno are foreign keys to the S (supplier) and J (project) 
relations, respectively.  The schemata of these relations are 
not provided here, as we do not use them in this paper.  
Also, we have replaced ‘#’ with ‘no’ in the key field names, 
because many DBMSes do not permit field names to include 
the ‘#’ character. 

Consider this query: “Find the sno values of the 
suppliers that supply all parts of weight equal to 17.” With 
perhaps a refresher on the ×/÷ relationship, students can tell 
us the schemata of the dividend (α) and divisor (β) relations 
which are required to set up the division: 
 

α sno pno  β pno 
 

Further, they should be able to state that the relational 
algebra queries necessary to create those relations are 

)(, SPJpnosnoπα ←  and ))(( 17 Pweightpno =← σπβ .  

When these queries are applied to Date’s sample data, the 
resulting relations are: 
 

α sno pno  β pno 
 S1 P1   P2 
 S2 P3   P3 
 S2 P5    
 S3 P3    
 S3 P4    
 S4 P6    
 S5 P1    
 S5 P2    
 S5 P3    
 S5 P4    
 S5 P5    
 S5 P6    

 
We have removed duplicate values from α, for clarity.  

With these relations in front of them, students will be able to 
see that supplier S5 is the only one that supplies both parts 
P2 and P3. 

IMPLEMENTING DIVISION… 

If our goal is to have our classes understand what relational 
division is and how it can be useful, the preceding may be all 
that is required. However, if we want to show our students 
how to express division in terms of the fundamental 
relational algebra operators (and eventually in SQL), we will 
need to explain a fairly complex query. 

…In Relational Algebra 

Having defined the relations α and β, we next show our 
students division in terms of π, ×, and -.  The expression is: 
 

        )))((()( αβαππαπβα −×−=÷ snosnosno  

where sno is the difference in the schemata of α and β (or, 
sno is the only attribute found in α but not in β). Texts 
typically present this expression in completely generic 
terms, which only seems to confuse our students. We prefer 
to introduce it in terms of this concrete suppliers-parts-
projects example. 

Even with our preliminary discussion of the 
construction of α and β, very few students will be able to 
understand the logic underlying that query without help. We 
explain this expression using a top-down approach. At the 
top level, the expression has the form DC − , where 

)(απ snoC =  and )))((( αβαππ −×= snosnoD .  In 

the end, we want to produce a set of sno values, and C is 
easily seen to be the set of available sno values. Because the 
operator is set difference, to get the desired result D must be 
a set of sno values that are not desirable. This, then, is the 
plan: Given a set of possible answers, remove from it those 
that are not answers; the tuples that remain must be the 
answers. 

How do we determine which sno values we are not 
interested in keeping? Again, it helps to think about it 
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backwards: In the end, we want to keep the sno values that, 
within α, are paired with all of members of β; thus, the sno 
values that we do not want are those that, when we examine 
α, we do not find paired with all of the members of β. Now, 
if we just happen to have a group of all possible sno, pno 
pairings and we remove the ones that also exist in α, we will 
be left with the pairs that we did not find in α. This is easily 
done: We create all possible pairings of α's sno values and 

β's pno values ))(( βαπ ×sno  and use set difference to 

remove from those pairings any pairs that we find in α. 
When presenting the relational algebra expression for 

division, we like to begin by presenting the sample data and 
allowing the students to manually find the result of the 
division through inspection of the dividend and divisor 
relations. However, finding the answer by inspection is a 
potential problem, one which we address in a later section. 

  After the students know the result, we work through 
the division expression on the same data and show most of 
the intermediate relations produced by the expression.  This 
helps the students focus on how the steps of the expression 
work together to produce the desired result. 

Using Date’s data, here is the walk-through for our 
example.  The expression βαπ ×)(sno  produces the 

possible sno, pno pairings: 
 

)(απ sno  sno  β pno  γ sno pno 

 S1   P2   S1 P2 
 S2 ×  P3 =  S1 P3 
 S3      S2 P2 
 S4      S2 P3 
 S5      S3 P2 
       S3 P3 
       S4 P2 
       S4 P3 
       S5 P2 
       S5 P3 

 
Using set difference, we remove from γ the pairings that 

already exist in α (the ‘victims’ are shaded): 

 
γ sno pno  α sno Pno  δ sno pno 
 S1 P2   S1 P1   S1 P2 
 S1 P3 -  S2 P3 =  S1 P3 
 S2 P2   S2 P5   S2 P2 
 S2 P3   S3 P3   S3 P2 
 S3 P2   S3 P4   S4 P2 
 S3 P3   S4 P6   S4 P3 
 S4 P2   S5 P1     
 S4 P3   S5 P2     
 S5 P2   S5 P3     
 S5 P3   S5 P4     
     S5 P5     
     S5 P6     
 
Note that all of γ’s S5 tuples were ‘victims.’  This 

means that S5 is the only supplier that supplies all parts of 
weight 17.  Removing γ’s sno values from the list of 
available sno values will produce the result of the division: 

 

)(απ sno  sno  )(δπ sno  sno  ÷ sno 

 S1   S1   S5 
 S2 -  S2 =   
 S3   S3    
 S4   S4    
 S5       

 
One of the difficulties in giving a class a feel for 

relational algebra is that commercial DBMSes do not accept 
relational algebra queries. We have had success using the 
relational algebra based LEAP DBMS [5] to help students 
familiarize themselves with relational algebra in general and 
division in particular. LEAP does not have a built-in division 
operator, the lack of which forces students to work through 
the implementation of division on their own. 

… In SQL 

After acquiring a relational algebra foundation, students 
have little trouble understanding how the parts of basic SQL 
queries correspond to the fundamental relational algebra 
operators. As in relational algebra, in SQL it is necessary to 
construct a division query manually. The resulting SQL 
queries are easily as confusing as the relational algebra 
expression. However, with the relational algebra version 
behind them, students are better prepared to understand an 
SQL version or two. As an additional benefit, concepts such 
as sub-queries and nested correlated queries can be 
demonstrated at the same time. 

Although efficient division algorithms exist [4], we 
know of no database management systems that recognize 
division queries and use a specific algorithm for their 
evaluation. This decision is understandable, given that 
division queries expressed in SQL would be difficult to 
detect and are uncommon when compared with other 
expensive operators (e.g., joins). One nice effect of this is 
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that instructors can use their DBMS's query plan explanation 
option to explore how a DBMS executes a division query. 
This investigation can lead to an in-class discussion of cases 
other than division in which one might wish to extract data 
from a DBMS and process it with a special-purpose 
algorithm. 

In the following subsections, we present four SQL 
implementations of division.  We do not advocate presenting 
all of them during lecture.  Instead, we suggest that 
instructors select for presentation one or two that integrate 
naturally into the students’ relational algebra and SQL 
backgrounds. 

 
Direct Application of the Expression 

 
Perhaps the most approachable formulation of division in 
SQL is through a direct translation of the relational algebra 
expression. This translation is easily performed with a 
bottom-up approach. 

Relations α and β can be created using the SQL queries 
select sno, pno from spj and select pno from p 
where weight = 17, respectively. These relations could be 
materialized as temporary relations in advance, or could be 
embedded in the translation as dynamically created sub-
queries. We opt for the latter, as we feel the introduction of 
temporary relations does not add appreciably to the clarity of 
the example. 

Recall that the relational algebra expression for division 
is in two parts, DC − , and that 

)))((( αβαππ −×= snosnoD .  Creating βαπ ×)(sno  

in SQL requires the use of sub-queries in the from clause of 
a select statement: 
 
    select sno, pno 
      from (select sno from spj) as t1, 
           (select pno from p 
             where weight=17) as t2; 
 

When sub-queries are used in the from clause, most 
DBMSes (including the one used for these examples, 
PostgreSQL v. 7.2.1 [7]) require the use of aliases to label 
the sub-queries. A select with no where clause produces a 
Cartesian Product of the supplied relations. 

Modern versions of SQL provide except as the 
equivalent of the relational algebra set difference operator. 
The presence of except makes the creation of the rest of the 
translation straight-forward: 

 
    select distinct sno from spj 

except 
select sno 
  from ( select sno, pno 
           from (select sno from spj) as t1, 
                (select pno from p 
                  where weight=17) as t2 
         except 
         select sno, pno 
           from spj 
       ) as t3; 
 
In PostgreSQL, a query plan explanation can be 

displayed by adding the keyword explain at the front of the 
query. When run on a database containing Date's sample 
data, an explanation of this expression revealed a complex 
plan that includes a nested-loops join, two sorts, three base-
relation scans, and five sub-query scans. Thus, a direct 
translation does not result in an inexpensive execution.  In 
spite of this, we feel that the connection to the relational 
algebra version makes it worth presenting to students who 
have already been exposed to relational algebra.  Note that 
the exact plan chosen by a query optimizer depends on a 
variety of factors, including past queries presented to the 
database and the sizes of the relations. 

 
Through the Application of Logical Equivalences 

 
The cost of execution of the direct translation helps explain 
why mainstream texts usually opt for formulations resulting 
from the application of quantification tautologies. 

Consider the tautology )),(( bafba ∃∀  ↔  

)),(( bafba ∃∃ . We can use it to replace a universal 
quantification (which SQL does not support) with the 
negation of an existential quantification, which SQL 
provides (not exists). The effect is to convert a query of 
the form “Find sno values such that for all parts of weight 17 
there exist suppliers that supply them all” into one of the 
form “Find sno values such that there do not exist any parts 
of weight 17 for which there do not exist any suppliers that 
supply them all.” We are exchanging inexpressibility in SQL 
for a double negation, which most people find difficult to 

comprehend. The resulting ‘double ∃ ’ SQL query looks 
like this: 

 
select distinct sno from spj as globl 
 where not exists 
      ( select pno from p 
         where weight = 17 and not exists 
              ( select * from spj as locl 
                 where locl.pno = p.pno 
                   and locl.sno = globl.sno)); 
 
Because PostgreSQL v. 7.2.1 complains about the use 

of the identifiers global and local as aliases, we have used 
obvious misspellings in our queries. 
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It is essential for students to understand that, in a 
correlated nested query such as this, the aliases (a.k.a. tuple 
variables) have scope across parts of the query based on 
their declaration position just as programming language 
variables have scope across code. In this example, the alias 
globl represents a unique tuple from relation SPJ for each 
execution of the innermost select. Further, globl is 
accessible, as its name suggests, from all parts of the query. 
By contrast, locl's scope is limited to just the innermost 
select. 

Our experience has been that students find this approach 
to be difficult to understand because of the double-negative 
construction and the disconnect from the logic of the 
relational algebra expression. It is no surprise that at least 
one textbook resorts to a ‘cookbook’ approach for the 
construction of division queries based on this tautology [9]. 

An alternate approach uses the idea of set containment 
(i.e., superset). If a supplier supplies a superset of the parts 
of weight 17, the supplier clearly supplies them all. SQL 
does not have a containment operator (though it was once 
proposed), but logic comes to our rescue again: If BA ⊇ , 

AB −  will be empty (or, )( AB −∃ ). Here, A is the set of 
parts of weight 17 that a supplier supplies, and B is the set of 
all available parts of weight 17. The resulting SQL query 
scans through the sno values, computes A based on the 
current sno value, and includes the sno value in the quotient 
if the difference is empty: 

 
select distinct sno from spj as globl 
 where not exists ( 
      ( select pno from p where weight = 17 ) 
        except ( select p.pno from p, spj 
                  where p.pno = spj.pno 
                    and spj.sno = globl.sno )); 
 
The logic of this version does not bother students 

greatly. If students are not familiar with relational algebra, 
this version of division can be more easily introduced than 
the direct translation and is easier for students to understand 
than the double-negative representation. 

The plans generated by PostgreSQL for these two 
formulations both require fewer operations than does the 

direct expression translation version, with the `double ∃ ' 
version having by far the fewest. 

 
A Counting We Will Go 

 
Tuples resulting from the application of a division operator 
exist because their data corresponds with all of the values in 
another relation. The superset approach uses set containment 
to count (in effect) the number of members in two sets in 
hopes of finding the sums to be equal. Having observed that 
the result is being determined by the cardinality of these sets, 
we can construct a fourth approach to the expression of 
division in SQL using the count() aggregate function. 
 

The idea is to find the sno values of the suppliers that 
supply parts of weight 17 and how many of those parts each 
supplies. This is easily accomplished with a join of P and 
SPJ that counts the pno values of weight 17 associated with 
each sno value. A having clause compares each count to the 
result of a sub-query that finds the total number of parts of 
weight 17. The resulting SQL query's plan is not as efficient 

as that of the `double ∃ ' version, but it is better than the 
other two, and may be more easily understood. 

 
   select distinct sno from spj, p 
    where spj.pno = p.pno and weight = 17 
 group by sno 
   having count(distinct p.pno) = 
          (select count (distinct pno) 
             from p where weight = 17); 
 

SOME DIVISION PITFALLS 

As explained in most database texts, division is used to 
answer “all” or “for all” queries, such as the “What are the 
names of the students taking all of the Computer Science 
seminar classes?” example mentioned at the start of the 
second section of this paper. The inherent suggestion is that 
division is the equivalent of the universal quantifier (∀) of 
the relational calculus family of formal relational languages. 
 

This suggestion does not withstand close scrutiny. The 
seminar query just mentioned can be used to demonstrate a 
key problem. The query is to return the names of the 
students who are enrolled in all of the CS seminar classes 
being offered (during the current term, presumably). Clearly, 
we need a relation with name and course identification 
attributes, and another with the course identifications of the 
seminar classes: 

 
enroll name class  seminar class 

 
Dividing enroll by seminar gives the desired result, 

unless seminar is an empty relation! Logically, if no seminar 
classes are being offered, any student is taking all of the 
seminar classes. This result is not satisfying and is not in 
keeping with the spirit of the original query. More 
accurately, the query that division is answering in this case is 
“What are the names of the students taking all of the 
Computer Science seminar classes, assuming that at least 
one is being offered?”. Because the divisor relation is often 
the result of a sub-query, the divisor could easily be empty. 
Students should be made aware of this possibility. 

A second problem with the “for all” wording is that 
students, desperate to avoid dealing with division, 
sometimes work hard to invent new interpretations of the 
meaning of queries in order to make less confusing operators 
seem suitable. 

Consider this slight variation on our suppliers-parts-
projects query: “Find the sno values of the suppliers that 
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supply all parts of weight equal to 19.” Having seen how to 
find the answer by inspection, with Date’s sample data 
available students soon discover that suppliers S4 and S5 
both supply all of the parts having a weight of 19. Rather 
than formulate a logically sound query using division, some 
students cannot resist the temptation to construct a simpler 
but incorrect query that happens to produce the correct 
answer: 

 
select distinct sno 
  from (select sno, pno from spj) as one, 
       (select pno from p 
         where weight = 19) as two 
 where one.pno = two.pno; 
 
This is merely a join of the α and β relations followed 

by a projection on sno, but the resulting relation has the 
same content as the result of the correct division query. 
What the students have constructed is a query to answer the 
question “Find the sno values of the suppliers that supply 
parts of weight equal to 19,” which is the original question 
without the “all.” 

Instructors can help students avoid temptation by 
selecting queries and sample data that produce a β relation 
with more than one tuple. In this example, only part P6 is of 
weight 19. If we attempt the same logically incorrect join 
query with our original weight of 17, the result will contain 
three suppliers - S2, S3, and S5 – because all three supply at 
least one of the two parts of weight 17. Division produces 
only S5, as we saw earlier.  Although this suggestion merely 
reduces the odds that the two types of queries will having 
matching results, we have found it to be an effective way for 
students to discover the importance of division on their own. 

CONCLUSION 

The relational algebra division operator need not be the 
source of confusion that many database students feel it to be. 
With a bit of time and a coherent progression of well- 
chosen examples, students can learn when to apply it, how to 
express it in SQL, and why those expressions are correct. 
We find our approach to be more effective and complete 
than those found in most database textbooks. 

REFERENCES  

[1] Codd, E. F., “A relational model of data for large shared data banks,” 
Communications of the ACM, 13, 6, 1970, pp. 377-387. 

[2] Codd, E. F., “Relational completeness of data base sublanguages,” in 
Data Base Systems (Courant Computer Science Symposium 6), 
Rustin, R., editor, Prentice-Hall, 1972. 

[3] Date, C. J., An Introduction to Database Systems, Addison-Wesley, 
seventh edition, 2000. 

[4] Graefe, G., “Relational division: Four algorithms and their 
performance,” Proceedings of the IEEE International Conference on 
Data Engineering, 1989, pp. 94-101. 

[5] Leyton, R., LEAP, http://leap.sourceforge.net/, 2002. 

[6] O'Neil, P., and O'Neil, E., Database -- Principles, Programming, and 
Performance, Academic Press, second edition, 2001. 

[7] PostgreSQL Global Development Group. PostgreSQL, 
http://www.postgresql.org/, 2002. 

[8] Ramakrishnan, R., and Gehrke, J., Database Management Systems, 
McGraw-Hill, third edition, 2003. 

[9] Watson, R.T., Data Management: Databases and Organizations, John 
Wiley and Sons, Inc., third edition, 2002. 

[10] Welty, C., and Stemple, D.W., “Human factors comparison of a 
procedural and a non-procedural query language,” ACM Transactions 
on Database Systems, 6, 4, 1981, pp. 626-649. 


