Data warehouse: conceptual design

December 5, 2011
Outline

- Data Warehouse conceptual design
 - facts, dimensions, measures
 - attribute tree
 - fact schema

- Exercise 1: insurance company
- Exercise 2: international airport
- Exercise 3: wholesale furniture company
Introduction

What is a Data Warehouse?

- It is a (usually huge) **collection of data**
- It is used primarily in **decision making processes**
- It is **integrated**: data comes from different sources
- It is **subject oriented**: it is used to study the dynamics of a specific topic
- It is **time varying**: it stores past and present data and the goal is to learn some information that could help in the future
Data Warehouse design process

Design steps

- Design process starts with the **integrated database**, usually represented by:
 - ER schema or
 - logical schema or
 - requirements

- The first step is **conceptual design**:
 - data is represented according to the **data cube model/fact model**

- The second step is **logical design**:
 - data is represented according to the **relational model**
Data cube model

Definitions

<table>
<thead>
<tr>
<th>Fact</th>
<th>A concept that is relevant for the decisional process (e.g. sales)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- A fact is always represented by frequently updated data, not static archives!</td>
</tr>
</tbody>
</table>

| **Measure** | A [numerical property](#) of a fact (e.g. sold quantity, total income) |

<table>
<thead>
<tr>
<th>Dimension</th>
<th>A property of a fact described with respect to a finite domain (e.g. product, time, zone)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Time should always be a dimension!</td>
</tr>
<tr>
<td></td>
<td>- Dimensions can have hierarchies (e.g. Time: Day → Month → Year, Zone: City → Region → State)</td>
</tr>
</tbody>
</table>
Conceptual design

How to do it?

- It is the first step towards the design of a Data Warehouse
- It starts from the documentation related to the integrated database and consists of:
 1. Facts definition
 2. For each fact:
 - attribute tree definition
 - attribute tree editing
 - dimensions definition
 - measures definition
 - hierarchies definition
 - fact schemata creation
 - glossary definition
Exercise 1
Insurance company

An insurance company requires the data warehouse design for accident analysis of its customers. In particular, the company requires to evaluate the type of accidents related to customers and type of policies.

Goal:
- Evaluate the history of accidents w.r.t. the policies and the customers of the insurance company
- Evaluate the history of policies w.r.t. the customers of the insurance company by considering the risk type and the policy amount

Questions: Design the Data Warehouse for the two problems (accident and risk analysis)
- Choose facts, measures and dimensions
- Define the attribute tree (and describe the editing phase)
- Define the fact schemata for the two considered facts
Exercise 1

Insurance company

The ER schema related to the insurance company operational DB, which contains the information that has to be considered to design the required Data Warehouse, is:
Exercise 1: A possible solution

Attribute tree definition

Fact: Accident
Exercise 1: A possible solution

Fact model definition

▶ **Fact: Accident**

![Diagram of Accident Fact Model]

- Policy-Class
- RiskType-Description
- DayOfThe Week
- Month
- Year
- Customer City
- Region
- Customer Sex
- BirthYear
- Motivation
- Date
- NumberOfAccidents
- Cost
- Accident
Exercise 1: A possible solution

Glossary definition

- **NumberOfAccidents**
  ```sql
  SELECT COUNT(*)
  FROM ACCIDENT A, POLICY P, RISK_TYPE R,
  CUSTOMER C
  WHERE - join conditions -
  GROUP BY A.Motivation, P.Class, R.Description,
  A.Date, C.City, C.Sex, Year(C.Birthday)
  ```

- **Cost**
  ```sql
  SELECT SUM(Cost)
  FROM ACCIDENT A, POLICY P, RISK_TYPE R,
  CUSTOMER C
  WHERE - join conditions -
  GROUP BY A.Motivation, P.Class, R.Description,
  A.Date, C.City, C.Sex, Year(C.Birthday)
  ```
Exercise 1: A possible solution

Attribute tree definition

- **Fact:** Policy
Exercise 1: A possible solution

Fact model definition

▶ **Fact:** Policy
Exercise 1: A possible solution

Glossary definition

- **NumberOfPolicies**

  ```sql
  SELECT COUNT(*)
  FROM POLICY P, RISK_TYPE R, CUSTOMER C
  WHERE - join conditions -
  GROUP BY P.Class, P.StartDate, P.EndDate,
  R.Description, C.City, C.Sex, Year(C.Birthday)
  ```

- **Amount**

  ```sql
  SELECT SUM(Amount)
  FROM POLICY P, RISK_TYPE R, CUSTOMER C
  WHERE - join conditions -
  GROUP BY P.Class, P.StartDate, P.EndDate,
  R.Description, C.City, C.Sex, Year(C.Birthday)
  ```
Exercise 2
International airport

Consider the following relational database schema of an international airport.

FLIGHT \((\text{IDF}, \text{Company}, \text{DepAirport}, \text{ArrAirport}, \text{DepTime}, \text{ArrTime})\)

FLYING \((\text{IDFlight}, \text{FlightDate})\)

AIRPORT \((\text{IAirport}, \text{AirName}, \text{City}, \text{State})\)

TICKET \((\text{Number}, \text{IDFlight}, \text{FlightDate}, \text{Seat}, \text{Rate}, \text{Name}, \text{Surname}, \text{Sex})\)

CHECK-IN \((\text{Number}, \text{CheckInTime}, \text{LuggageNr})\)

Design the Data Warehouse for the analysis of tickets:

- Choose facts, measures and dimensions
- Define the attribute tree and the fact schema
Exercise 2: A possible solution
Fact definition, Attribute tree definition, Fact schemata creation

- **Facts:** Ticket analysis
- **Measures:** NumberOfTickets, NumberOfLuggage, TotalIncome
- **Dimensions:** Ticket characteristics (CusSex, FlightDate), Flight (FlightCompany, DepAirport, ArrAirport, DepTime, ArrTime)
Exercise 2: A possible solution
Fact definition, Attribute tree definition, Fact schemata creation

▶ Fact: Ticket
Exercise 2: A possible solution

Glossary definition

- **NumberOfTickets**
  ```sql
  SELECT COUNT(*)
  FROM TICKET
  GROUP BY CustSex, IDFlight, FlightDate
  ```

- **NumberOfLuggage**
  ```sql
  SELECT SUM(c.LuggageNr)
  FROM TICKET t, CHECK-IN c
  WHERE t.Number = c.Number
  GROUP BY t.CustSex, t.IDFlight, t.FlightDate
  ```

- **TotalIncome**
  ```sql
  SELECT SUM(Rate)
  FROM TICKET
  GROUP BY CustSex, IDFlight, FlightDate
  ```
Exercise 3
Wholesale furniture company

Design the data warehouse for a wholesale furniture company. The data warehouse has to allow to analyze the company’s situation at least with respect to Furnitures, Customers and Time. Moreover, the company needs to analyze:

- the furniture with respect to its type (chair, table, wardrobe, cabinet. . .), category (kitchen, living room, bedroom, bathroom, office. . .) and material (wood, marble. . .)
- the customers with respect to their spatial location, by considering at least cities, regions and states

The company is interested in learning at least the quantity, income and discount of its sales:

- Choose facts, measures and dimensions
- Define the attribute tree and the fact schema
Exercise 3
Schema of the operational database

SALES (IDSale, Date, IDFurniture, IDCustomer, Quantity, Cost, Discount)

FURNITURE (IDFurniture, FurnitureType, FurnitureName, Category)

CUSTOMER (IDCustomer, Name, Surname, Birthdate, Sex, City)
Exercise 3: A possible solution

Facts, dimensions, measures, attribute tree, fact schema

- **Fact:** Sales

 ![Attribute tree](image)

 ![Fact schema](image)

- **Measures:** Quantity, Income, Discount
- **Dimensions:** Furniture (Type, Category, Material)

 Customer (Age, Sex, City → Region → State)

 Time (Day → Month → Year)