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Data Mart logical models

• MOLAP (Multidimensional On-Line 
Analytical Processing) stores data by 
using a multidimensional data structure

• ROLAP (Relational On-Line Analytical 
Processing) uses the relational data 
model to represent multidimensional 
data



Data Mart logical modelsData Mart logical models
MOLAPMOLAP stands for Multidimensional OLAP. In MOLAP cubes the data 

aggregations and a copy of the fact data are stored in a multidimensional 
structure on the computer. It is best when extra storage space is available 
on the server and the best query performance is desired. MOLAP local 
cubes contain all the necessary data for calculating aggregates and can be 
used offline. MOLAP cubes provide the fastest query response time and 
performance but require additional storage space for the extra copy of data 
from the fact table.

ROLAPROLAP stands for Relational OLAP. ROLAP uses the relational data model to 
represent multidimensional data. In ROLAP cubes a copy of data from the 
fact table is not (necessarily) made and the data aggregates may be stored 
in tables in the source relational database. A ROLAP cube is best when 
there is limited space on the server and query performance is not very 
important. ROLAP local cubes contain the dimensions and cube definitions 
but aggregates are calculated when needed. ROLAP cubes requires less 
storage space than MOLAP and HOLAP cubes.

HOLAPHOLAP stands for Hybrid OLAP. A HOLAP cube has a combination of the 
ROLAP and MOLAP cube characteristics. It does not necessarily create a 
copy of the source data; however, data aggregations are stored in a 
multidimensional structure on the server. HOLAP cubes are best when 
storage space is limited but faster query responses are needed.



ROLAPROLAP

It is based on the Star Schema
A star schema is :

A set of relations DT1, DT2, …DTn - dimension 
tables - each corresponding to a dimension. 
Each DTi is characterized by a primary key di and 
by a set of attributes describing the analysis 
dimensions with different aggregation levels
A relation FT, fact table, that imports the 
primary keys of dimensions tables. The primary 
key of FT is d1 d2 … dn ; FT contains also an 
attribute for each measure



Star schema: exampleStar schema: example
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Star schema: considerations

• Dimension table keys are surrogates, 
for space efficiency reasons

• Dimension tables are de-normalized 
product type category 
is a  transitive dependency

• De-normalization introduces 
redundancy, but fewer joins to do

• The fact table contains information 
expressed at different aggregation 
levels



OLAP queries on Star Schema

select City, Week, Type, sum(Quantity)
from Week, Shop, Product, Sale
where Week.ID_Week=Sale.ID_Week and

Shop.ID_Shop=Sale.ID_Shop and 
Product.ID_Product=Sale.ID_Product and
Product.Category = ‘FoodStuff’

group by City,Week,Type
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Snowflake schemaSnowflake schema
• The snowflake schema reduces the de-

normalization of the dimensional tables 
DTi of a star schema

Removal of some transitive dependencies 
• Dimensions tables of a snowflake schema 

are composed by 
A primary key di,j
A subset of DTi attributes that directly 
depends by di,j
Zero or more external keys that allow to 
obtain the entire information



Snowflake schemaSnowflake schema
• In a snowflake schema 

Primary dimension tables: their keys are 
imported in the fact table 
Secondary dimension tables



Snowflake schema
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Snowflake schema: 
considerations

• Reduction of memory space
• New surrogate keys
• Advantages in the execution of queries 

related to attributes contained into 
fact and primary dimension tables



Normalization & Snowflake 
schema

• If there exists a cascade of transitive 
dependencies, attributes depending 
(transitively or not) on the snowflake 
attribute are placed in a new relation



OLAP queries on snowflake 
schema
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select City, Week, Type, sum(Quantity)
from Week, Shop, Type, City, Product, Sale
where Week.ID_Week=Sale.ID_Week and

Shop.ID_Shop=Sale.ID_Shop and 
Shop.ID_City=City.ID_City and
Product.ID_Product=Sale.ID_Product and
Product.ID_Type=Type.ID_Type and
Product.Category = ‘FoodStufs’

group by City,Week, Type



ViewsViews
• Aggregation allows to consider concise 

(summarized) information
• Aggregation computation is very 

expensive pre-computation
• A view denotes a fact table containing 

aggregate data



Views

• A view can be characterized by its 
aggregation level (pattern)
– Primary views: correspond to the primary 

aggregation levels
– Secondary views: correspond to secondary 

aggregation levels (secondary events)



Views 
(MultiDimensional Lattice)

v1={product,date,shop}

v2={type,date,city}

v3={category,month,city}v4={type,month,region}

v5={trimester,region}

vi <= vj iff vi is less
aggregate than vj, i.e. 
vj’s data can be
computed from vi’s 
data



Partial aggregations

• Sometimes it is useful to introduce new 
measures in order to manage 
aggregations correctly
– Derived measures: obtained by applying 

mathematical operators to two or more 
values of the same tuple



Partial aggregations

The correct solution consists 
in the  aggregation of  data 

on the primary table

Type Product Quantity Price
T1
T1
T2

P1
P2
P3

5
7
9

1,00
1,50
0,80

Profit
5,00
10,50
7,20

Type Quantity Price
T1
T2

12
9

1,25
0,80

Profit
15,00
7,20

SUM AVG
22
(total profits)

,70

22,20WeWe cancan’’t just sum up t just sum up 
profitsprofits asas beforebefore!!!!

Profit=Quantity*Price



Aggregate operators
• Distributive operator: allows to 

aggregate data starting from partially 
aggregated data (e.g. sum, max, min)

• Algebraic operator: requires further 
information to aggregate data (e.g. avg)

• Holistic operator: it is not possible to 
obtain aggregate data starting from 
partially aggregate data (e.g. mode, 
median)



Aggregate operators

• Currently, aggregate navigators are 
included in the commercial DW system 

• They allow to re-formulate OLAP 
queries on the “best” view

• They manage aggregates only by means 
of distributive operators



Relational schema and 
aggregate data

• It is possible to define different 
variants of the star schema in order to 
manage aggregate data

• First solution: data of primary and 
secondary views are stored in the same 
fact table
– NULL values for attributes having 

aggregation levels finer than the current 
one



Aggregate data in a
unique fact table

………………
…8501700113
…150300112
…85170111
…profitqtyProd_keyDate_keyShop_key

SALE

……………
…Lazio--3
…LazioRoma-2
…E.R.BolognaCOOP11
…regioncityshopShop_key

SHOP

1° row represents sale 
values for the single 
shop, 2° row
represents aggregate 
values for Roma, 3°
row represents
aggregate values for
Lazio, etc…



Relational schema and 
aggregate data

• Second solution: distinct aggregation 
patterns are stored in distinct fact 
tables: constellation schema

• Only the dimension of the fact table is 
optimized, but this is a great 
improvement already

• Max optimization level: separate fact 
tables, and also repeated dimension 
tables for different aggregation levels



Constellation schema
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Alternative solution
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Snowflake schema 
for aggregate 

data

Date _ key

Date
Month

Trimester _ key
Year
Day

Week

DATE

Trimester _ key

Region _ key

Quantity
Profit

Unitary price
Nr . customers

Shop _ key

Date _ key

Quantity
Profit

Unitary price
Nr . customers

Product _ key

Shop _ key

Shop
Shop city

Region _ key
Shop state
Manager
district

Product _ key

Product
Type

Category
Division

Marketing group
Brand

Brand city

SHOP

PRODUCT

v1

v5

Trimester _ key

Trimester
Year

TRIMESTER

Region _ key

Shop region
Shop state

REGION



Logical design



Logical modelling

• Sequence of steps that, starting from 
the conceptual schema, allow one to 
obtain the logical schema for a specific 
data mart

Logical 
project

INPUT
Conceptual Schema
WorkLoad
Data Volume
System constraints

OUTPUT
Logical Schema



Worklad
• In OLAP systems, workload is dynamic in 

nature and intrinsically extemporaneous
– Users’ interests change during time
– Number of queries grows when users gain 

confidence in the system
– OLAP should be able to answer any

(unexpected) request
• During requirement collection phase, 

deduce it from:
– Interviews with users
– Standard reports



Worklad
• Characterize OLAP operations:

– Based on the required aggregation pattern
– Based on the required measures
– Based on the selection clauses

• At system run-time, workload can be
desumed from the system log



Data volume
• Depends on:

– Number of distinct values for each attribute
– Attribute size
– Number of events (primary and secondary) 

for each fact
• Determines:

– Table dimension
– Index dimension
– Access time



Logical modelling: steps

1. Choice of the logical schema 
(star/snowflake schema)

2. Conceptual schema translation
3. Choice of the materialized views
4. Optimization



From fact schema to star schema

• Create a fact table containing measures 
and descriptive attributes directly 
connected to the fact

• For each hierarchy, create a dimension 
table containing all the attributes



Guidelines

• Descriptive attributes (e.g. color)
– If it is connected to a dimensional 

attribute, it has to be included in the 
dimension table containing the attribute 
(see slide n. 13, snowflake example, agent)

– If it is connected to a fact, it has to be 
directly included in the fact schema

• Optional attributes (e.g. diet)
– Introduction of null values or ad-hoc values



Guidelines

• Cross-dimensional attributes (e.g. VAT)
– A cross-dimensional attribute b defines an 

N:M association between two or more 
dimensional attributes a1,a2, …, ak

– It requires to create a new table including b
and having as key the attributes a1,a2, …, ak



Guidelines
• Shared hierarchies and convergence

– A shared hierarchy is a hierarchy which 
refers to different elements of the fact 
table (e.g. caller number, called number)

– The dimension table should not be duplicated
– Two different situations:

• The two hierarchies contain the same attributes, 
but with different meanings (e.g. phone call 
caller number, phone call called number)

• The two hierarchies contain the same attributes 
only for part of the hierarchy trees



Shared hierarchies and convergence

• The two hierarchies contain the same attributes, 
but with different meanings (e.g. phone call caller 
number, phone call called number)

N_OF_CALLS
DATE_ID
CALLED_ID
CALLER_ID
CALLS

DISTRICT

PH_NUMR
USER_ID

USER



Shared hierarchies and convergence

NUMBER

DATE_ID

ORDER_ID

STOREHOUSE_ID
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CUSTOMER
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CITY_ID

• The two hierarchies contain the same 
attributes only for part of the trees. 
Here we could also decide to replicate 
the shared portion



Guidelines
• Multiple edges 

– A bridge table 
models the multiple 
edge

• the key of the bridge 
table is composed by 
the combination of 
attributes connected 
to the multiple edge

PROFIT
QUANTITY
DATE_ID
BOOK_ID
SALES

GENRE
BOOK
BOOK_ID
BOOKS

AUTHOR
AUTH_ID

AUTHORS

WEIGHT
AUTH_ID
BOOK_ID

BRIDGE

The weight of 
the edge is the 
contribution of 
each edge to 
the cumulative 
relationship



Guidelines

• Multiple edges: bridge table
– Weighed queries take into account the 

weight of the edge

Profit for each author

SELECT AUTHORS.Author,SUM(SALES.Profit * BRIDGE.Weight)
FROM AUTHORS, BRIDGE, BOOKS, SALES
WHERE AUTHORS.Author_id=BRIDGE.Author_id
AND BRIDGE.Book_id=BOOKS.Book_id
AND BOOKS.Book_id=SALES.Book_id
GROUP BY AUTHORS.Author



Guidelines

• Multiple edges: bridge table
– Impact queries do not take into account the 

weight of the edge

Sold copies for each author

SELECT AUTHORS.Author, SUM(SALES.Quantity)
FROM AUTHORS, BRIDGE, BOOKS, SALES
WHERE AUTHORS.Author_id=BRIDGE.Author_id
AND BRIDGE.Book_id=BOOKS.Book_id
AND BOOKS.Book_id=SALES.Book_id
GROUP BY AUTHORS.Author



If we want to keep the 
star model

Multiple edges with a star 
schema: add authors to the 
fact schema

PROFIT
QUANTITY
DATE_ID

BOOK_ID

SALES

GENRE
BOOK
BOOK_ID
BOOKS

AUTHOR
AUTH_ID

AUTHORS
AUTH_ID

Here we don’t need the weight because 
the fact table records quantity and 
profit per book and per author



Secondary-view precomputation
• The choice about views that have to be 

materialized takes into account 
contrasting requirements:
– Cost functions minimization

• Workload cost
• View maintenance cost 

– System constraints
• Disk space
• Time for data update

– Users constraints
• Max answer time
• Data freshness



Materialized views (MD lattice) 

= candidate views
They could reduce
elaboration 
costs

= exact views:
They solve exactly the 
queries

= less aggregate views:
They solve more than one 
query



Materialized views (MD lattice) 
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Materialized views (MD lattice) 
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Materialized Views
• It is useful to materialize a view when:

– It directly solves a frequent query
– It reduce the costs of some queries

• It is not useful to materialize a view 
when:
– Its aggregation pattern is the same as 

another materialized view
– Its materialization does not reduce the 

cost
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