
Data Warehouse
Logical Design

Letizia Tanca
Politecnico di Milano

(with the kind support of
Rosalba Rossato)

Data Mart logical models

• MOLAP (Multidimensional On-Line
Analytical Processing) stores data by
using a multidimensional data structure

• ROLAP (Relational On-Line Analytical
Processing) uses the relational data
model to represent multidimensional
data

Data Mart logical modelsData Mart logical models
MOLAPMOLAP stands for Multidimensional OLAP. In MOLAP cubes the data

aggregations and a copy of the fact data are stored in a multidimensional
structure on the computer. It is best when extra storage space is available
on the server and the best query performance is desired. MOLAP local
cubes contain all the necessary data for calculating aggregates and can be
used offline. MOLAP cubes provide the fastest query response time and
performance but require additional storage space for the extra copy of data
from the fact table.

ROLAPROLAP stands for Relational OLAP. ROLAP uses the relational data model to
represent multidimensional data. In ROLAP cubes a copy of data from the
fact table is not (necessarily) made and the data aggregates may be stored
in tables in the source relational database. A ROLAP cube is best when
there is limited space on the server and query performance is not very
important. ROLAP local cubes contain the dimensions and cube definitions
but aggregates are calculated when needed. ROLAP cubes requires less
storage space than MOLAP and HOLAP cubes.

HOLAPHOLAP stands for Hybrid OLAP. A HOLAP cube has a combination of the
ROLAP and MOLAP cube characteristics. It does not necessarily create a
copy of the source data; however, data aggregations are stored in a
multidimensional structure on the server. HOLAP cubes are best when
storage space is limited but faster query responses are needed.

ROLAPROLAP

It is based on the Star Schema
A star schema is :

A set of relations DT1, DT2, …DTn - dimension
tables - each corresponding to a dimension.
Each DTi is characterized by a primary key di and
by a set of attributes describing the analysis
dimensions with different aggregation levels
A relation FT, fact table, that imports the
primary keys of dimensions tables. The primary
key of FT is d1 d2 … dn ; FT contains also an
attribute for each measure

Star schema: exampleStar schema: example

SALE

Quantity
Profit

shop city stateweekmonth

agent

product

type

category
supplier

ID_Shop
ID_Week
ID_Product
Quantity
Profit

ID_Week
Week
Month

ID_Product
Product
Type
Category
Supplier

ID_Shop
Shop
City
State
Agent

WEEK

PRODUCT

SHOP

Star schema: considerations

• Dimension table keys are surrogates,
for space efficiency reasons

• Dimension tables are de-normalized
product type category
is a transitive dependency

• De-normalization introduces
redundancy, but fewer joins to do

• The fact table contains information
expressed at different aggregation
levels

OLAP queries on Star Schema

select City, Week, Type, sum(Quantity)
from Week, Shop, Product, Sale
where Week.ID_Week=Sale.ID_Week and

Shop.ID_Shop=Sale.ID_Shop and
Product.ID_Product=Sale.ID_Product and
Product.Category = ‘FoodStuff’

group by City,Week,Type

ID_Shop
ID_Week
ID_Product
Quantity
Profit

ID_Week
Week
Month

ID_Product
Product
Type
Category
Supplier

ID_Shop
Shop
City
State
Agent

WEEK

PRODUCT

SHOP

SALE

Snowflake schemaSnowflake schema
• The snowflake schema reduces the de-

normalization of the dimensional tables
DTi of a star schema

Removal of some transitive dependencies
• Dimensions tables of a snowflake schema

are composed by
A primary key di,j
A subset of DTi attributes that directly
depends by di,j
Zero or more external keys that allow to
obtain the entire information

Snowflake schemaSnowflake schema
• In a snowflake schema

Primary dimension tables: their keys are
imported in the fact table
Secondary dimension tables

Snowflake schema

ID_Shop
ID_Week
ID_Product
Quantity
Profit

ID_Week
Week
Month

ID_Product
Product
ID_Type
Supplier

ID_Shop
Shop
ID_City
Agent

WEEK

PRODUCT

SHOP

ID_City
City
State

CITY

ID_Type
Type
Category

TYPE

DT1,1

DT1,2

d1,1

d1,2

External key

SALE

Quantity
Profit

shop city stateweekmonth

agent

product

type

category
supplier

Snowflake schema:
considerations

• Reduction of memory space
• New surrogate keys
• Advantages in the execution of queries

related to attributes contained into
fact and primary dimension tables

Normalization & Snowflake
schema

• If there exists a cascade of transitive
dependencies, attributes depending
(transitively or not) on the snowflake
attribute are placed in a new relation

OLAP queries on snowflake
schema

ID_Shop
ID_Week
ID_Product
Quantity
Profit

ID_Week
Week
Month

ID_Product
Product
ID_Type

Category

Supplier

ID_Shop
Shop
ID_City

State

Agent

WEEK

PRODUCT

SHOP

ID_Type
Type

TYPE

ID_City
City

CITY

select City, Week, Type, sum(Quantity)
from Week, Shop, Type, City, Product, Sale
where Week.ID_Week=Sale.ID_Week and

Shop.ID_Shop=Sale.ID_Shop and
Shop.ID_City=City.ID_City and
Product.ID_Product=Sale.ID_Product and
Product.ID_Type=Type.ID_Type and
Product.Category = ‘FoodStufs’

group by City,Week, Type

ViewsViews
• Aggregation allows to consider concise

(summarized) information
• Aggregation computation is very

expensive pre-computation
• A view denotes a fact table containing

aggregate data

Views

• A view can be characterized by its
aggregation level (pattern)
– Primary views: correspond to the primary

aggregation levels
– Secondary views: correspond to secondary

aggregation levels (secondary events)

Views
(MultiDimensional Lattice)

v1={product,date,shop}

v2={type,date,city}

v3={category,month,city}v4={type,month,region}

v5={trimester,region}

vi <= vj iff vi is less
aggregate than vj, i.e.
vj’s data can be
computed from vi’s
data

Partial aggregations

• Sometimes it is useful to introduce new
measures in order to manage
aggregations correctly
– Derived measures: obtained by applying

mathematical operators to two or more
values of the same tuple

Partial aggregations

The correct solution consists
in the aggregation of data

on the primary table

Type Product Quantity Price
T1
T1
T2

P1
P2
P3

5
7
9

1,00
1,50
0,80

Profit
5,00
10,50
7,20

Type Quantity Price
T1
T2

12
9

1,25
0,80

Profit
15,00
7,20

SUM AVG
22
(total profits)

,70

22,20WeWe cancan’’t just sum up t just sum up
profitsprofits asas beforebefore!!!!

Profit=Quantity*Price

Aggregate operators
• Distributive operator: allows to

aggregate data starting from partially
aggregated data (e.g. sum, max, min)

• Algebraic operator: requires further
information to aggregate data (e.g. avg)

• Holistic operator: it is not possible to
obtain aggregate data starting from
partially aggregate data (e.g. mode,
median)

Aggregate operators

• Currently, aggregate navigators are
included in the commercial DW system

• They allow to re-formulate OLAP
queries on the “best” view

• They manage aggregates only by means
of distributive operators

Relational schema and
aggregate data

• It is possible to define different
variants of the star schema in order to
manage aggregate data

• First solution: data of primary and
secondary views are stored in the same
fact table
– NULL values for attributes having

aggregation levels finer than the current
one

Aggregate data in a
unique fact table

………………
…8501700113
…150300112
…85170111
…profitqtyProd_keyDate_keyShop_key

SALE

……………
…Lazio--3
…LazioRoma-2
…E.R.BolognaCOOP11
…regioncityshopShop_key

SHOP

1° row represents sale
values for the single
shop, 2° row
represents aggregate
values for Roma, 3°
row represents
aggregate values for
Lazio, etc…

Relational schema and
aggregate data

• Second solution: distinct aggregation
patterns are stored in distinct fact
tables: constellation schema

• Only the dimension of the fact table is
optimized, but this is a great
improvement already

• Max optimization level: separate fact
tables, and also repeated dimension
tables for different aggregation levels

Constellation schema
Date_key

Shop_key

Quantity
Profit

Unitary price
Nr. customers

Date_key

Date
Month

Trimester
Year
Day

Week

Shop_key

Date_key

Quantity
Profit

Unitary price
Nr. customers

Product_key

Shop_key

Shop
Shop city

Shop region
Shop state
Manager
district

Product_key

Product
Type

Category
Division

Marketing group
Brand

Brand city

DATE

SHOP

PRODUCT

v1

v5

Alternative solution

Trimester _key

Region _key

Quantity
Profit

Unitary price
Nr . customers

Date _key

Date
Month

Trimester
Year
Day

Week

Shop _key

Data _key

Quantity
Profit

Unitary price
Nr . customers

Product _key

Shop _key

Shop
Shop city

Shop region
Shop state
Manager
district

Product _ key

Product
Type

Category
Division

Marketing group
Brand

Brand city

DATE

SHOP

PRODUCT

v1

v5

Trimester _ key

Trimester
Year

TRIMESTER

Region _key

Shop region
Shop state

REGION

Replicate the dimension tables
at different aggregation levels

Snowflake schema
for aggregate

data

Date _ key

Date
Month

Trimester _ key
Year
Day

Week

DATE

Trimester _ key

Region _ key

Quantity
Profit

Unitary price
Nr . customers

Shop _ key

Date _ key

Quantity
Profit

Unitary price
Nr . customers

Product _ key

Shop _ key

Shop
Shop city

Region _ key
Shop state
Manager
district

Product _ key

Product
Type

Category
Division

Marketing group
Brand

Brand city

SHOP

PRODUCT

v1

v5

Trimester _ key

Trimester
Year

TRIMESTER

Region _ key

Shop region
Shop state

REGION

Logical design

Logical modelling

• Sequence of steps that, starting from
the conceptual schema, allow one to
obtain the logical schema for a specific
data mart

Logical
project

INPUT
Conceptual Schema
WorkLoad
Data Volume
System constraints

OUTPUT
Logical Schema

Worklad
• In OLAP systems, workload is dynamic in

nature and intrinsically extemporaneous
– Users’ interests change during time
– Number of queries grows when users gain

confidence in the system
– OLAP should be able to answer any

(unexpected) request
• During requirement collection phase,

deduce it from:
– Interviews with users
– Standard reports

Worklad
• Characterize OLAP operations:

– Based on the required aggregation pattern
– Based on the required measures
– Based on the selection clauses

• At system run-time, workload can be
desumed from the system log

Data volume
• Depends on:

– Number of distinct values for each attribute
– Attribute size
– Number of events (primary and secondary)

for each fact
• Determines:

– Table dimension
– Index dimension
– Access time

Logical modelling: steps

1. Choice of the logical schema
(star/snowflake schema)

2. Conceptual schema translation
3. Choice of the materialized views
4. Optimization

From fact schema to star schema

• Create a fact table containing measures
and descriptive attributes directly
connected to the fact

• For each hierarchy, create a dimension
table containing all the attributes

Guidelines

• Descriptive attributes (e.g. color)
– If it is connected to a dimensional

attribute, it has to be included in the
dimension table containing the attribute
(see slide n. 13, snowflake example, agent)

– If it is connected to a fact, it has to be
directly included in the fact schema

• Optional attributes (e.g. diet)
– Introduction of null values or ad-hoc values

Guidelines

• Cross-dimensional attributes (e.g. VAT)
– A cross-dimensional attribute b defines an

N:M association between two or more
dimensional attributes a1,a2, …, ak

– It requires to create a new table including b
and having as key the attributes a1,a2, …, ak

Guidelines
• Shared hierarchies and convergence

– A shared hierarchy is a hierarchy which
refers to different elements of the fact
table (e.g. caller number, called number)

– The dimension table should not be duplicated
– Two different situations:

• The two hierarchies contain the same attributes,
but with different meanings (e.g. phone call
caller number, phone call called number)

• The two hierarchies contain the same attributes
only for part of the hierarchy trees

Shared hierarchies and convergence

• The two hierarchies contain the same attributes,
but with different meanings (e.g. phone call caller
number, phone call called number)

N_OF_CALLS
DATE_ID
CALLED_ID
CALLER_ID
CALLS

DISTRICT

PH_NUMR
USER_ID

USER

Shared hierarchies and convergence

NUMBER

DATE_ID

ORDER_ID

STOREHOUSE_ID
SHIPPINGS

CUSTOMER

ORDER

ORDER_ID
ORDERS

REGION

CITY_ID

CITIES

CITY_ID

STOREHOUSE

STOREHS_ID

STOREHOUSE

CITY_ID

• The two hierarchies contain the same
attributes only for part of the trees.
Here we could also decide to replicate
the shared portion

Guidelines
• Multiple edges

– A bridge table
models the multiple
edge

• the key of the bridge
table is composed by
the combination of
attributes connected
to the multiple edge

PROFIT
QUANTITY
DATE_ID
BOOK_ID
SALES

GENRE
BOOK
BOOK_ID
BOOKS

AUTHOR
AUTH_ID

AUTHORS

WEIGHT
AUTH_ID
BOOK_ID

BRIDGE

The weight of
the edge is the
contribution of
each edge to
the cumulative
relationship

Guidelines

• Multiple edges: bridge table
– Weighed queries take into account the

weight of the edge

Profit for each author

SELECT AUTHORS.Author,SUM(SALES.Profit * BRIDGE.Weight)
FROM AUTHORS, BRIDGE, BOOKS, SALES
WHERE AUTHORS.Author_id=BRIDGE.Author_id
AND BRIDGE.Book_id=BOOKS.Book_id
AND BOOKS.Book_id=SALES.Book_id
GROUP BY AUTHORS.Author

Guidelines

• Multiple edges: bridge table
– Impact queries do not take into account the

weight of the edge

Sold copies for each author

SELECT AUTHORS.Author, SUM(SALES.Quantity)
FROM AUTHORS, BRIDGE, BOOKS, SALES
WHERE AUTHORS.Author_id=BRIDGE.Author_id
AND BRIDGE.Book_id=BOOKS.Book_id
AND BOOKS.Book_id=SALES.Book_id
GROUP BY AUTHORS.Author

If we want to keep the
star model

Multiple edges with a star
schema: add authors to the
fact schema

PROFIT
QUANTITY
DATE_ID

BOOK_ID

SALES

GENRE
BOOK
BOOK_ID
BOOKS

AUTHOR
AUTH_ID

AUTHORS
AUTH_ID

Here we don’t need the weight because
the fact table records quantity and
profit per book and per author

Secondary-view precomputation
• The choice about views that have to be

materialized takes into account
contrasting requirements:
– Cost functions minimization

• Workload cost
• View maintenance cost

– System constraints
• Disk space
• Time for data update

– Users constraints
• Max answer time
• Data freshness

Materialized views (MD lattice)

= candidate views
They could reduce
elaboration
costs

= exact views:
They solve exactly the
queries

= less aggregate views:
They solve more than one
query

Materialized views (MD lattice)

0

10

20

30

40

50

60

1

Query execution cost

Disk space

View comput. time

Materialized views (MD lattice)

0

10

20

30

40

50

60

1

Query execution cost

Disk space

View comput. time

Materialized views (MD lattice)

0

5

10

15

20

25

30

1

Query execution cost

Disk space

View comput. time

Materialized Views
• It is useful to materialize a view when:

– It directly solves a frequent query
– It reduce the costs of some queries

• It is not useful to materialize a view
when:
– Its aggregation pattern is the same as

another materialized view
– Its materialization does not reduce the

cost

ReferencesReferences

• M. Golfarelli, S. Rizzi: Data Warehouse:
teoria e pratica della progettazione
McGraw-Hill, 2002.

• Ralph Kimball: The Data Warehouse
Toolkit: Practical Techniques for
Building Dimensional Data Warehouses
John Wiley 1996.

