
1/10/2012

1

An overview of
T l DBTemporal DBs

Letizia Tanca
(from various resources on the Web (*) and with(from various resources on the Web (), and with
the kind support of Rosalba Rossato)

(*) see acknowledgements in the last slide

Research area in temporal
databases
Aims at:

Characterizing the semantics of temporal
data
Providing expressive and efficient ways to:

Model
Store
Query

temporal data

1/10/2012

2

Application examples
Academic: Transcripts record courses
taken in previous and the current semestertaken in previous and the current semester
or term and grades for previous courses
Accounting: What bills were sent out and
when, what payments were received and
when?

Delinquent accounts, cash flow over time
Money-management software e.g., account
balance over time.

Budgets: Previous and projected budgets,
multi-quarter or multi-year budgets

Application examples (cont.)

Data Warehousing: Historical trend analysis for
decision supportdecision support
Financial: Stock market data
Audit: why were financial decisions made, and
with what information available?
GIS: Geographic Information Systems

Land use over time: boundary of parcels
changeover time, as parcels get partitioned and
merged.
Title searches

Law: Which law was in effect at each point in
time, and what time periods did that law cover?

1/10/2012

3

Application examples (cont.)

Medical records: Patient records drug regimes labMedical records: Patient records, drug regimes, lab
tests.Tracking course of disease
Process control: Timestamping sensor findings,
previsions for future readings, future scenarios
Capacity planning for roads and utilities.
Configuring new routes, ensuring high utilization
P j t h d li Mil t t k i tProject scheduling: Milestones, task assignments
Reservation systems: airlines, hotels, trains.
Scientific: Timestamping satellite images. Dating
archeological finds

Temporal DBs Applications:
Conclusion

It is difficult to identify applications that do y pp
not involve the management of temporal
data.
These applications would benefit from
built-in, knowledge independent temporal
support
Main benefits:

More efficient application development
Potential increase in performance (general-
purpose optimization)

1/10/2012

4

Time Datatype in SQL-2

DATE: four digits for the year and two for month and
day. Multiple formats allowed:

E.g., 2001-12-08 or 12/08/2001 or 12.08.2001
ISO, USA, EUR, JIS representations supported---DBA
selects which one is used in specific system.
Internal representation is the same, independent of
external ones. Basically an 8-byte string

TIME: 2 digits for hour, 2 for minutes, and 2 for
seconds plus optional fractional digits (systemseconds, plus optional fractional digits (system
dependent). E.g., 13:50:00, 13:50, 1:50 PM denote
the same time.

Internal Representation (DB2)

A date is a three-part value (year, month, and day). The range of the year part
is 0001 to 9999 The range of the month part is 1 to 12 The range of the dayis 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to x, where x depends on the month.
The internal representation of a date is a string of 4 bytes. Each byte consists
of 2 packed decimal digits. The first 2 bytes represent the year, the third byte
the month, and the last byte the day.
The length of a DATE column, as described in the SQLDA, is 10 bytes, which is
the appropriate length for a character string representation of the value.
A time is a three-part value (hour, minute, and second) designating a time of
day under a 24-hour clock. The range of the hour part is 0 to 24, while the
range of the other parts is 0 to 59. If the hour is 24, the minute and second
specifications will be zero (from then on “TIME 0” starts)specifications will be zero (from then on TIME 0 starts)
The internal representation of a time is a string of 3 bytes. Each byte is 2
packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.
The length of a TIME column, as described in the SQLDA, is 8 bytes, which is
the appropriate length for a character string representation of the value.

1/10/2012

5

Motivating example (1)

A relation storing information about g
employees and their assignment to
departments

Employee(Name,Salary,Department)
It is easy to know the salary of an employee

SELECT Salary
FROM EmployeeFROM Employee
WHERE Name=‘John’

Motivating example (2)
A certain kind of time information is not
critical: e.g. add the date of birthcritical: e.g. add the date of birth
Employee(Name,Salary,Department,

DateofBirth DATE)
It is easy to know the date of birth of an
employee

SELECT DateofBirth
FROM Employee
WHERE Name=‘John’

Each employee has only one date of birth

1/10/2012

6

When is a TDB useful
We want to keep the employment history
Employee(Name Salary Department DateofBirthEmployee(Name,Salary,Department, DateofBirth
DATE, Start DATE, End DATE)
This time unenvisaged consequences may happen

Name Salary Dept DateB Start End

John 60.000 Shipping 9/9/65 1/1/95 1/6/95

John 70.000 Shipping 9/9/65 1/6/95 1/10/95

John 70.000 Loading 9/9/65 1/10/95 1/2/96

John 70.000 Research 9/9/65 1/2/96 1/1/97

Example: Determine the Salary

To know the employee’s current salary /just like p y y j
the birthdate case):

SELECT Salary
FROM Employee
WHERE Name =‘John’

AND Start <= CURRENT_TIMESTAMP
AND CURRENT_TIMESTAMP <= End

1/10/2012

7

Determine the Salary (2)

We want to determine the salary historyWe want to determine the salary history
Result: for each employee, the maximal
intervals of each salary

Name Salary Start End

John 60.000 1/1/95 1/6/95

John 70.000 1/6/95 1/1/97

Determine the Salary History (2)

Alternative 1Alternative 1
Give the user a printout of Salary and
Dept information; the user has to
determine when the salary changed

Alternative 2
Use SQL as much as possibleUse SQL as much as possible
Find those intervals that overlap or are
adjacent and that should be merged

1/10/2012

8

SQL embedded into
programming language

CREATE TABLE Temp(Salary,Start,End) AS SELECT Salary,Start,End
FROM Employee
WHERE N ‘J h ’WHERE Name=‘John’

Repeat
UPDATE Temp T1
SET (T1.End) = (SELECT MAX(T2.End)

FROM Temp AS T2
WHERE T1.Salary = T2.Salary

AND T1.Start <T2.Start
AND T1.End >= T2.Start

Overlapping
intervals

Iterative
loop

AND T1.End < T2.End)
WHERE EXISTS (SELECT *

FROM Temp AS T2
WHERE T1.Salary = T2.Salary

AND T1.Start <T2.Start
AND T1.End >= T2.Start
AND T1.End < T2.End)

Until no tuples updated

If such
overlapping
intervals exist

Interval merging
I n it ia l

in t e r v a ls

A f t e r
O n e p a s s

A f t e r
T w o p a s s

1/10/2012

9

SQL

Loop is executed logN times in the worst case, where N
i th b f t l i h i f l iis the number of tuples in a chain of overlapping or
adjacent value-equivalent tuples
Then delete extraneous, non-maximal intervals

DELETE FROM Temp T1
WHERE EXISTS (

SELECT *
FROM Temp AS T2
WHERE T1.Salary = T2.Salary

AND ((T1.Start > T2.Start AND T1.End <= T2.End)
OR (T1.Start >= T2.Start AND T1.End < T2.End))

Same functionality
entirely in SQL

CREATE VIEW Temp(Salary,Start,End) AS
SELECT Salary, Start, End
FROM EmployeeFROM Employee
WHERE Name=‘John’

SELECT DISTINCT F.Salary, F.Start, L.End
FROM Temp AS F, Temp AS L
WHERE F.Start < L.End AND F.Salary = L.Salary
AND NOT EXISTS (SELECT *

FROM Temp AS T
WHERE T.Salary = F.Salary
AND F.Start < T.Start AND T.Start < L.End
AND NOT EXISTS (SELECT *

O SFROM Temp AS T1
WHERE T1.Salary = F.Salary
AND T1.Start < T.Start

AND T.Start <= T1.End))
AND NOT EXISTS (SELECT *

FROM Temp AS T2
WHERE T2.Salary = F.Salary
AND ((T2.Start < F.Start AND F.Start <= T2.End)

OR (T2.Start < L.End AND L.End < T2.End)))

1/10/2012

10

Same query in Calculus

Solution 3: SQL and a cursor to
build chain of intervals in the table

The linked list is only needed if the cursor
is not ordered by START

1/10/2012

11

Another solution

Reorganize the schema in order toReorganize the schema in order to
separate information about Salary from
information about Dept

Employee1(Name,Salary,Start DATE, End DATE)
Employee2(Name,Dept,Start DATE, End DATE)

Another solution (2)

Reorganize the schemaReorganize the schema
Employee1(Name,Salary,Start DATE, End DATE)
Employee2(Name,Dept,Start DATE, End DATE)

Determining information about the
salary is easy now!
SELECT Salary, Start, Endy, ,
FROM Employee1
WHERE Name =‘John’

1/10/2012

12

Another solution (3)

But now givenBut now, given
Employee1(Name,Salary,Start DATE, End DATE)
Employee2(Name,Dept, Start DATE, End DATE)

How do we obtain (again) a table of (g)
SALARY, DEPARTMENT

intervals?

Example of Temporal Join

Name Salary Start End Name Dept Start End

Employee1 Employee2

Name Salary Start End
John 60.000 1/1/95 1/6/95

John 70.000 1/6/95 1/1/97

Name Dept Start End
John Shipping 1/1/95 1/10/95

John Loading 1/10/95 1/2/96

John Research 1/2/96 1/1/97

Name Salary Dept Start End

J h 60 000 Shi i 1/1/95 1/6/95Employee1 John 60.000 Shipping 1/1/95 1/6/95

John 70.000 Shipping 1/6/95 1/10/95

John 70.000 Loading 1/10/95 1/2/96

John 70.000 Research 1/2/96 1/1/97

Employee1

Employee2

1/10/2012

13

Evaluation of Temporal Join

Alternative 1: print the two tables andAlternative 1: print the two tables and
let the user make the combinations
Alternative 2: SQL

E m p lo y e e 1

E m p lo y e e 2

R e s u lt

Evaluation of Temporal Join

Alternative 2: SQL

SELECT Employee1.Name, Salary, Dept,
Employee1.Start, Employee1.End

FROM Employee1,Employee2
WHERE Employee1.Name=Employee2.Name
AND Employee2.Start <= Employee1.Start
AND Employee1.End < Employee2.End

This is only ONE of the possible
relationships between the two intervals!

1/10/2012

14

Temporal Join in SQL
SELECT Employee 1.Name, Salary, Dept, Employee1.Start, Employee 1.End
FROM Employee1, Employee2
WHERE Employee 1.Name=Employee2.Name

Employee 1
p y p y

AND Employee 2.Start <= Employee 1.Start
AND Employee 1.End <= Employee2.End

UNION ALL
SELECT Employee 1.Name, Salary, Dept, Employee1.Start, Employee 2.End
FROM Employee1, Employee2
WHERE Employee 1.Name=Employee2.Name

AND Employee 1.Start > Employee2.Start
AND Employee 2.End < Employee1.End
AND Employee 1.Start < Employee2.End

UNION ALL
SELECT Employee 1.Name, Salary, Dept, Employee2.Start, Employee1.End
FROM Employee1 Employee2

Employee2

Employee2

Employee 1

FROM Employee1, Employee2
WHERE Employee 1.Name=Employee2.Name

AND Employee 2.Start > Employee 1.Start
AND Employee 1.End < Employee2.End
AND Employee 2.Start < Employee 1.End

UNION ALL
SELECT Employee 1.Name, Salary, Dept, Employee2.Start, Employee2.End
FROM Employee1, Employee2
WHERE Employee 1.Name=Employee2.Name

AND Employee 2.Start >= Employee 1.Start
AND Employee 2.End <= Employee1.End

Employee2

Employee 1

Employee2

Employee 1

Evaluation of Temporal Join

Alternative 3: use embedded SQLAlternative 3: use embedded SQL
TSQL2: Give the salary and the
history of employees

SELECT Employee1.Name, Salary, Dept,
FROM Employee1,Employee2
WHERE Employee1.Name=Employee2.Name

1/10/2012

15

Desiderata for a Temporal
Data Model

Capture the semantics of time-varyingCapture the semantics of time varying
information
Retain the simplicity of the relational
model: in practice, a strict superset
Present all the information concerning an
bj t i h t f hiobject in a coherent fashion

Ensure ease of implementation
Ensure high performance

In a temporal DB,
information is timestamped
A timestamp is a seven-part value (year, month, day,
hour minute second and microsecond) that designates ahour, minute, second, and microsecond) that designates a
date and time as defined above, except that the time
includes a fractional specification of microseconds.
The internal representation of a timestamp is a string of
10 bytes, each of which consists of 2 packed decimal
digits. The first 4 bytes represent the date, the next 3
bytes the time, and the last 3 bytes the microseconds.
The length of a TIMESTAMP column, as described in the
SQLDA, is 26 bytes, which is the appropriate length forSQLDA, is 26 bytes, which is the appropriate length for
the character string representation of the value.

1/10/2012

16

What should be timestamped?

Temporal DBMSs manage time-referenced data: p g
timestamps are associated to database entities
Individual attribute value
Group of attribute values
Individual tuple
ObjectObject
Set of tuples
Schema item

What is the semantics of a
timestamp?

Database facts have at least two relevant aspects:Database facts have at least two relevant aspects:
Valid Time of a fact: it times when the fact is true in
the modeled reality – thus valid time captures the
time-varying states of the real world
Transaction Time of a fact: when it was recorded in
the database – thus transaction time captures the
time-varying states of the databasetime varying states of the database

Applications that demand traceability of
DB changes require transaction time

1/10/2012

17

Valid time

Valid time concerns the time when a fact was
true in the modelled reality

It can be in the past or in the future and
can be changed frequently
Although all facts have a valid time, the
valid time of a fact may not necessarily be
recorded in the DB (e.g. unknown or
i l t t th li ti)irrelevant to the application)
If a database models different worlds,
database facts might have several valid
times, one for each world

Base table views in a valid-time
DB (http://rapidbase.vtt.fi)
Base table views in a valid-time
DB (http://rapidbase.vtt.fi)

base
l history

WHERE VALID AT
TIMESTAMP
'1998-02-13 14:02:01.00'

column history
columns

history record

WHERE VALID NOW
(current view, default)base table

y

1/10/2012

18

Transaction Time
Transaction time concerns when a fact was current in the

database
It cannot extend beyond the current time and cannot
be changed
TT may be associated with any database entity, not only
facts
From the TT viewpoint, an entity has a duration: from
insertion to deletion with multiple insertions andinsertion to deletion, with multiple insertions and
deletions being possible for the same entity !
Deletion is pure logical (not physically removed) but the
entity ceases to be part of the database’s current state

Note…
Transaction time may be associated not
only to real world facts but also to otheronly to real world facts, but also to other
DB concepts, like attribute values, which
are updated at a given time

E.g.
Name Salary Bdate City
B b 60000 1943 01 01 MilBob 60000 1943-01-01 Milan
John 70000 1955-06-01 London

Name Salary Bdate City
Bob 60000 1943-01-01 Milan
John 80000 1955-06-01 London

Modified Dec 15, 2005

1/10/2012

19

Queries and Updates
A transaction time table is append only: it keeps
the history of the updates made on the database. y p
Transaction time tables support rollback queries,
such as:

On October 1, what rank was our database
showing for Tom?

A valid time table can be updated: e.g., Tom’s
past record is changed once his rank is changed p g g
retroactively.
Valid time tables support historical queries, such
as:

What was Tom’s rank on October 1 (according to
our current database)?

Valid and Transaction time are
orthogonal temporal dimensions

They could be independently recorded or not y p y
and are associated with specific properties
TT, unlike VT, is well-behaved and may be
supplied automatically by the DBMS
Both TT and VT values are drawn from a time
domain, which may or may not stretch infinitely
into past and futureinto past and future
Time domain may be discrete or continuous
In databases, a finite and discrete time domain is
typically assumed

1/10/2012

20

Valid Time and Transaction
Time
Thus we can have four different kinds ofThus we can have four different kinds of

tables:
1. Snapshot
2. Valid-time
3. Transaction-time
4. Bitemporal

Example: Tom's
Employment History

On January 1, 1984, Tom joined the faculty y , , j y
as an Instructor.
On December 1, 1984, Tom completed his
doctorate, and so was promoted to
Assistant Professor effective retroactively
on July 1, 1984.
O M h 1 1989 T dOn March 1, 1989, Tom was promoted to
Associate Professor, effective July 1, 1989
(proactive update).

1/10/2012

21

Bitemporal Tables

Bit l T bl d l d tBitemporal Tables are append-only and support
queries of both kinds (rollback&historical) such as:

On October 1, 1984, what did we think Tom's rank
was at that date?

TSQL3:
SELECT Rank
FROM Faculty AS FFROM Faculty AS F
WHERE Name = 'Tom‘

AND
VALID(F) OVERLAPS DATE '1984-10-01‘

AND
TRANSACTION(F) OVERLAPS DATE '1984-10-01'

Bitemporal tables

Complete history of updates (TT)p y p ()
History of events (VT)

TRANSACTION TIME

1/10/2012

22

MAIN PHILOSOPHICAL
ISSUES

LINEAR vs. CIRCULAR structure
FINITE vs. INFINITE boundedness
OPEN vs. CLOSED intervals
DISCRETE vs. CONTINUOUS density
ABSOLUTE (t t f t)ABSOLUTE (past, present, future) vs.
RELATIVE (before, concurrent-with, after)
OBJECTIVE vs. SUBJECTIVE

Main Time Properties in
Temporal Database research
(inherited from philosophy)

Structure
Boundedness
Density
Time Data Types
Time and Facts
I hi ti t d ti l t d tIn more sophisticated ways, time related to
context may be:

ABSOLUTE vs. RELATIVE
OBJECTIVE vs. SUBJECTIVE

1/10/2012

23

Linear Time
B hi Ti

Time structure

Branching Time
Directed Acyclic Graph
Periodic/Cyclic Time e.g., days of the week.

Time structure

Linear: total order on instantsLinear: total order on instants
Hypothetical (possible futures): tree
rooted on now

now

1/10/2012

24

Time structure
Linear: total order on instants
Hypothetical (possible futures): treeHypothetical (possible futures): tree
rooted on now
Direct Acyclic graph
Periodic/cyclic time: week, months,….,
for recurrent processes

Time is normally assumed to be totally
ordered

Unbounded
Ti i i i t (b d d f th l ft)

Time Boundedness

Time origin exists (bounded from the left)
Bounded time (bounds on both ends)

1/10/2012

25

Time Boundedness
Assume a linear time structureAssume a linear time structure
Boundedness

Unbounded
Time origin exists (bounded from left)
Bounded time (bounds on both ends)

Nature of bound
Unspecified
Specified

Discrete:

Time Density

Time line is isomorphic to the integers
Time line composed of a sequence of
non-decomposable time periods of some fixed,
minimal duration, termed chronons.
Between each pair of chronons is a finite number
of other chronons.

A bounded discrete representation of time is the simplest option,
used in SQL-2 and most temporal DBs.

1/10/2012

26

D

Time Density

Dense: (difficult to implement)
Time line is isomorphic to the rational numbers.
Between any two chronons is an infinite number
of other instants.

Continuous: (very difficult to implement)
Time line is isomorphic to the real numbers.
Between each pair of instants is an infinite
number of other instants.

NOW: a peculiar concept

NOW:
Ever increasing
Whatever activity happens now
It separates the past from the future

HERE: the main difference is that you can’t
“reuse” time
The uniqueness of now is one of theThe uniqueness of now is one of the
reasons why techniques from other
research areas are not readily (or not
completely) applicable to temporal data

1/10/2012

27

Various Temporal Types
used in temporal DBs

A time instant is a time point on the time line (a chronon).
A t i i t t f t i thi i tAn event is an instantaneous fact, i.e, something occurring at an
instant. The event occurrence time is the (valid time) instant at
which the event occurs in the real world.
An instant set is a set of instants.
A time period or interval is the set of time instants between two
instants (start time and end time).
The name “interval” conflicts with SQL data type INTERVALThe name interval conflicts with SQL data type INTERVAL

The SQL INTERVAL data type holds the internal (binary) format
of an interval value. It encodes a value that represents a span
of time. INTERVAL types are divided into two classes: year-

month intervals and day-time intervals. A year-month interval
can represent a span of years and months, and a day-time

interval can represent a span of days, hours, minutes,
seconds, and fractions of a second.

Temporal Types (2)

Time interval: an oriented duration of timeTime interval: an oriented duration of time
Duration: amount of time with a known
length, but no specific starting or ending
instants

Positive interval: forward motion time
N ti i t l b k d ti tiNegative interval: backward motion time

Temporal element: finite union of periods

1/10/2012

28

Intervals
An interval [s,e] is a set of times from time s to time e.
Does interval [s,e] represent an infinite set?Does interval [s,e] represent an infinite set?
Consider it as a finite sequence of chronons
An interval is treated as a single type, not as a pair of
separate values.
Intervals can be open/closed w.r.t. start point/end point.
eg.

[d04,d10],[d04,d11),(d03,d10],(d03,d11)

all represent the sequence of days from day4 to day10
inclusive.

Predicates on intervals

1/10/2012

29

Predicates on intervals (2)

Relational operators

1/10/2012

30

Aggregate operators

Aggregate operators

X1 = { [D01,D01], [D03,D05], [D04,D06] }
X2 = { [D01,D01], [D03,D04], [D04,D06] }
X3 = { [D01,D01], [D03,D06]}
X3 = COALESCE (X1) = COALESCE(X2)

1/10/2012

31

Coalesce

Example of coalesce

P2
P#=P1 or P#=P2

[d06,d09]

1/10/2012

32

A relational example

Employee (Name, Salary, Title, DateofBirth,Start DATE, Stop DATE)

Name Salary Title DateofBirth Start Stop
Bob 60000 AssistantProvost 1945-04-19 1993-01-01 1993-06-01
Bob 70000 AssistantProvost 1945-04-19 1993-06-01 1993-10-01AssistantProvost
Bob 70000 Provost 1945-04-19 1993-10-01 1994-02-01
Bob 70000 Professor 1945-04-19 1994-02-01 1995-01-01

Extracting the Salary
History in TSQL2

SELECT Salary,startDATE,stopDATE
FROM E lFROM Employee
WHERE Name = 'Bob'
There is no explicit mention of time in the query. By default

the system returns the coalesced time history

Name Salary Start Endy
Bob 60.000 1/1/95 1/6/95

Bob 70.000 1/6/95 1/1/97

1/10/2012

33

Unfold

Example of unfold

1/10/2012

34

Temporal difference

DURING

Temporal Joins:
Example of a difficult task

Name Salary Start Stop
Bob 60000 1993-01-01 1993-06-01
Bob 70000 1993-06-01 1995-01-01

Employee1:

Name Title Start Stop
Bob AssistantProvost 1993-01-01 1993-10-01
Bob Provost 1993-10-01 1994-02-01
Bob FullProfessor 1994-02-01 1995-01-01

Their Temporal Join:

Employee2:

Name Salary Title Start Stop
Bob 60000 AssistantProvost 1993-01-01 1993-06-01
Bob 70000 AssistantProvost 1993-06-01 1993-10-01
Bob 70000 Provost 1993-10-01 1994-02-01
Bob 70000 FullProfessor 1994-02-01 1995-01-01

1/10/2012

35

Temporal join

Temporal Join in SQL
SELECT E1.Name, Salary, Title,

E1.Start, E1.Stop
FROM Employee1 AS E1,

Employee2 AS E2

UNION ALL
SELECT E1.Name, Salary, Title

E2.Start, E1.Stop
FROM Employee1 AS E1,

Employee2 AS E2
WHERE E1.Name=E2.Name AND

E2.Start <= E1.Start AND
E1.Stop <= E2.Stop

UNION ALL
SELECT E1.Name, Salary, Title,

E1.Start, E2.Stop

Employee2 AS E2
WHERE

E1.Name = E2.Name AND
E2.Start > E1.Start AND
E1.Stop <= E2.Stop AND E2.Start < E1.Stop
UNION ALL
SELECT E1.Name, Salary, Title

E2.Start, E2.Stop
FROM Employee1 AS E1

FROM Employee1 AS E1,
Employee2 AS E2

WHERE E1.Name = E2.Name AND
E1.Start > E2.Start AND
E2.Stop< E1.Stop AND
E1.Start < E2.Stop

FROM Employee1 AS E1,
Employee2 AS E2

WHERE
E1.Name = E2 Name AND E2.Start => E1.Start
AND E2.Stop <= E1.Stop AND NOT
(E1.Start = E2.Start AND E1.Stop = E2.Stop)

1/10/2012

36

Temporal Joins in TSQL2

SELECT E1.Name, Salary, TitleSELECT E1.Name, Salary, Title
FROM Employee1 AS E1, Employee2 AS E2
WHERE E1.Name = E2.Name

Note: in TSQL2, the basic temporal , p
element is a finite union of intervals.

Constraints

1/10/2012

37

Constraints

Reviewing the Situation

The importance of temporal applications has p p pp
motivated much research on temporal DBs: but
no satisfactory solution has been found yet:

SQL3 does not support temporal queries, yet the
standard contains a “Part 7: SQL/Temporal”
Temporal DBMSs have not reached a satisfactory
performance level and remain an open researchperformance level and remain an open research
problem.
Several alternatives, in terms of data model and
SQL extensions to be used

1/10/2012

38

Temporal Data Models

To extend a DBMS to become temporal, p ,
mechanisms must be provided for
capturing valid and transaction times of
the facts recorded by relations (temporal
relations)
More than 24 extended relational models
h b d t dd ti t thhave been proposed to add time to the
relational model
Most of them support only valid time

Temporal Query Languages

In the literature, there are severalIn the literature, there are several
query and definition languages
managing temporal dimensions

TSQL, HSQL,TempSQL: only VT
TOSQL l TTTOSQL: only TT
TSQL2, TQuel, SQL3: both TT and VT

1/10/2012

39

Business reality changes
over time

Software changes are actually to be accepted g y p
as a part of the software operational life:

call for modifications of the applications or
of the database schema
require compatibility with the interfaces
users were adopting at a previous time.

The knowledge about reality is modified:
Appropriate documentation of suchAppropriate documentation of such
changes should provide change tracking
and explanation.

Business reality changes
over time

Modifications may be due to:
an improved perception/knowledge of the reality of interestan improved perception/knowledge of the reality of interest
need for application evolution. Examples:

simple lexical/terminological changes due, for instance, to
the acquisition of new clients/customers or to the merge
with another company or a richer carnet of functionalities
offered by the same application

a modification of the reality of interest, Examples:
the citizenship act of United Kingdom;
different enrolment policies at the University;
different national borders and laws;different national borders and laws;
different job regulations in a company [e.g. new medical
data required for some specific patient categories];
new medical or pharmaceutical knowledge about diseases
and therapies/protocols.

1/10/2012

40

Schema evolution and
versioning

changes are seldom appropriately documented, and
b t difi ti t ft l thsubsequent modifications must often rely on the

designers’ and the DBA’s memory.
need for seamless compatibility among different
schema versions, in order for users to be redirected
over the appropriate version depending on the
application phase they are referring to.
Same considerations apply to a temporal database:

all the previous versions of the data schema andall the previous versions of the data, schema and
applications must be preserved
support is needed to answer historical as well as
snapshot queries independently of instance and
schema changes.

Schema evolution and
versioning

Deal with the need to retain currentDeal with the need to retain current
data and software system functionality
in the face of changing database
structure.
Offer a solution to the problem by
enabling intelligent handling of anyenabling intelligent handling of any
temporal mismatch between data and
data structure.

1/10/2012

41

Schema evolution and
versioning

Schema evolution: permits p
modifications of the schema without
the loss of extensional data
Schema versioning: allows the
querying of all data through
appropriate version-based interfaces
Schema evolution is a particular case

of schema versioning, where only the
last version of the schema is retained

Schema Modification
Operators (Curino, Zaniolo et al.)

1/10/2012

42

Track changes via imperative
primitives: example

View-based tracking
approach

Changes between two differentChanges between two different
versions are represented by means of
appropriate queries (views)
Applications and users interact with
such views, which give place to
different mappings w r t the differentdifferent mappings w.r.t. the different
versions

1/10/2012

43

View-based tracking

SELECT e.eid, c.carplate
Issued against FROM emp-acct e, car-

registration c
WHERE e.eid = c.eid
ON 2004-03-17;

Issued against
S2 which was not
there yet on
2004-03-17

By means of
query rewriting,

SELECT e.eid, e.carplate
FROM emp-acct e
ON 2004-03-17;

the system
should translate
the query to insist
on the current
database schema
S1.b

Acknowledgements and
Temporal DBs pointers
http://www.scism.sbu.ac.uk/cios/paul/Resea

h/tdb li k ht lrch/tdb_links.html
http://www.seas.smu.edu/~mario/tdb-
general.html
http://www.cs.aau.dk/~csj/Thesis/pdf/
chapter1.pdf
Rick Snodgrass, Ilsoo Ahn: “Temporal
Databases” IEEE Computer Sept 1986Databases , IEEE Computer, Sept. 1986
This set of slides is derived from various
resources found on the web (Zaniolo,
Course at Purdue Univ., etc.)

